Impact of Land Use and Climate Change on Streamflow: An Assessment Using a Semi-Empirical Model in the Guishui Watershed of North China
Chunni Gao,
Mark Honti,
Jinhua Cheng () and
Tao Wang
Additional contact information
Chunni Gao: Jinyun Forest Ecosystem Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
Mark Honti: ELKH-BME Water Research Group, Eötvös Loránd Research Network, 1111 Budapest, Hungary
Jinhua Cheng: Jinyun Forest Ecosystem Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
Tao Wang: Jinyun Forest Ecosystem Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
Land, 2024, vol. 13, issue 6, 1-15
Abstract:
Land-use change may significantly influence streamflow. The semi-empirical model PhosFate was used to analyze the impact of land use and climate change on streamflow by choosing the Guishui watershed as a pilot site and then expanding, applying it to all of North China. The Guishui watershed (North Beijing, China) has experienced a dramatic decline in its streamflow in recent decades. Parallel to this, significant land-use change has happened in this area; afforestation programs have increased forest cover from 41% (1980) to 59% (2013) and a similar increase in forest cover can also be observed in North China. Managing flow decline requires separating climatic and direct human-influenced effects. The results showed the following: (1) Afforestation is a major factor that decreased total flow in the Guishui watershed from 1996 to 2014; total flow increased by around 24% more than the actual dataset in the constant scenario (no afforestation) and decreased by 5% more than the actual dataset in the forest scenario (all agriculture land use transferred to forests). (2) When forest coverage increases, the Qinghai–Tibet Plateau and the Loess Plateau are the most sensitive areas regarding total flow in North China; the total flow change rate increased by up to 25% in these two areas when land use shifted from sparse vegetation to mixed forests. After analyzing the contributions of these two factors, we formulated recommendations on future afforestation practices for North China. In the central–north and northwest districts, the annual precipitation is under 520 mm and 790 mm, respectively, and the practice of afforestation should be more carefully planned to prevent severe damage to streams. This research also proved that the PhosFate model can be used in North China, which would be a practical tool for watershed management.
Keywords: land use; streamflow; PhosFate; Guishui watershed; North China (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2073-445X/13/6/725/pdf (application/pdf)
https://www.mdpi.com/2073-445X/13/6/725/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:13:y:2024:i:6:p:725-:d:1399665
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().