Seasonal Grazing Does Not Significantly Alter the Particle Structure and Pore Characteristics of Grassland Soil
Juejie Yang (),
Ruiqi Zhang,
Rong Cao,
Shikui Dong,
Taogetao Baoyin and
Tianqi Zhao ()
Additional contact information
Juejie Yang: Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Ruiqi Zhang: School of Grassland Science, Beijing Forestry University, Beijing 100083, China
Rong Cao: School of Grassland Science, Beijing Forestry University, Beijing 100083, China
Shikui Dong: School of Grassland Science, Beijing Forestry University, Beijing 100083, China
Taogetao Baoyin: School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
Tianqi Zhao: Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Land, 2024, vol. 13, issue 6, 1-11
Abstract:
Seasonal grazing is a recognized and sustainable approach to livestock management, but there is still a lack of comprehensive research on its impact on soil structure. This study utilizes advanced scanning electron microscopy technology to quantitatively evaluate the long-term effects of seasonal grazing on grassland soil structure, focusing on soil pore distribution characteristics and particle size. The investigation offers a detailed visual representation of the arrangement of soil particles at a micro-level. In both grazed and ungrazed plots (NG), soil particles ranging from 0.005 to 0.05 mm and 0.075 to 0.25 mm in size were predominant, constituting 20% and 60%, respectively. In plots subjected to seasonal grazing (grazing in June and August, G68, and grazing in July and September, G79), micro-particles (0.002–0.005 mm) and particles sized 0.05–0.075 mm were significantly lower compared to NG. Scanning electron microscope (SEM) images demonstrate structural differences, with NG displaying a higher proportion of small to medium-sized particles, more small pores, and fewer large pores. Analysis of pore size and morphology reveals the prevalence of large pores in both grazed and ungrazed plots. Continuous grazing plots exhibit significantly higher proportions of large pores compared to NG, while seasonal grazing plots show no significant differences. Correlation analyses indicate associations between soil physicochemical properties, particle size, and pore structure. Total soil nitrogen (TN), total soil carbon (TC), and soil moisture positively correlate with 0.005–0.05 mm particle proportions, while EC is negatively correlated with 0.05–0.075 mm particles. This study enhances our understanding of the effects of grazing practices on soil structure and provides scientific evidence for sustainable land management.
Keywords: seasonal grazing; grassland; soil particle composition; soil pore characteristics (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2073-445X/13/6/730/pdf (application/pdf)
https://www.mdpi.com/2073-445X/13/6/730/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:13:y:2024:i:6:p:730-:d:1400133
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().