A Simulated Assessment of Land Use and Carbon Storage Changes in the Yanqi Basin under Different Development Scenarios
Ying Jiang,
Yilinuer Alifujiang (),
Pingping Feng,
Ping Yang and
Jianpeng Feng
Additional contact information
Ying Jiang: College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China
Yilinuer Alifujiang: College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China
Pingping Feng: College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China
Ping Yang: College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China
Jianpeng Feng: College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830017, China
Land, 2024, vol. 13, issue 6, 1-23
Abstract:
The most extensive carbon reservoir system on Earth is found in the vegetation and soil in terrestrial ecosystems, which are essential to preserving the stability of ecosystems. Land use/cover change (LUCC) patterns in terrestrial ecosystems significantly impact carbon storage (CS). Therefore, it is imperative to investigate the relationship between LUCC and CS to coordinate regional ecological conservation and industrial development. In this study, the characteristics of spatial and temporal changes in land use and CS in the Yanqi Basin from 2000 to 2020 were revealed using the PLUS (patch-generating land use simulation) model and the CS module of the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) model. This study also predicted the spatial and temporal evolution of CS and the response mechanism of the Yanqi Basin from four scenarios—natural development scenario (NDS), ecological protection scenario (EPS), cropland protection scenario (CPS), and urban development scenario (UDS) for the years 2030, 2040, and 2050. This study shows the following: (1) Between 2000 and 2020, the Yanqi Basin witnessed an expansion in cropland and construction land, the order of the land use dynamic degree which is as follows: construction land > cropland > woodland > unused land > water > grassland. At the same time, the CS exhibited a trend of growth that was followed by a decline, a cumulative decrease of 3.61 Tg. (2) Between 2020 and 2050, woodland, grassland, and unused land decreased under the NDS and UDS. Meanwhile, grassland and woodland showed an expanding trend, and there was a decrease in cropland and construction land under the EPS; the CPS projected an increase in cropland to 3258.06 km 2 by 2050. (3) CS under the UDS is always the lowest, and CS under the EPS is the highest; moreover, by 2050, CS under the EPS is projected to increase by 1.18 Tg compared with that under the UDS. The spatial distribution of CS shows a high value in the western part of the region and a low value in the eastern part of the region, which is more in line with the historical spatial distribution. (4) The development of land by human activities is one of the major factors leading to the change of CS. The direct cause of the decrease in CS is the transformation of large areas of cropland and woodland into construction land. Therefore, woodlands must be protected to improve CS and prevent ecological degradation. At the same time, future land use planning in the Yanqi Basin needs to limit the conversion rate of various types of land, control the construction land, optimize the urban pattern, improve the regional CS level, adhere to the concept of striving to achieve carbon neutrality, and realize the sustainable development of the region to provide scientific suggestions for carrying out macro-decision making regarding land use planning in arid areas.
Keywords: land use change; carbon storage; PLUS model; InVEST model; scenario simulation; Yanqi Basin (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2073-445X/13/6/744/pdf (application/pdf)
https://www.mdpi.com/2073-445X/13/6/744/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:13:y:2024:i:6:p:744-:d:1402353
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().