EconPapers    
Economics at your fingertips  
 

Stacked Ensemble Model for the Automatic Valuation of Residential Properties in South Korea: A Case Study on Jeju Island

Woosung Kim and Jengei Hong ()
Additional contact information
Woosung Kim: School of Business, Konkuk University, Seoul 05029, Republic of Korea
Jengei Hong: School of Management and Economics, Handong Global University, Pohang 37554, Republic of Korea

Land, 2024, vol. 13, issue 9, 1-24

Abstract: While the use of machine learning (ML) in automated real estate valuation is growing, research on stacking ML models into ensembles remains limited. In this paper, we propose a stacked ensemble model for valuing residential properties. By applying our models to a comprehensive dataset of residential real estate transactions from Jeju Island, spanning 2012 to 2021, we demonstrate that the predictive power of ML-based models can be enhanced. Our findings indicate that the stacked ensemble model, which combines predictions using ridge regression, outperforms all individual algorithms across multiple metrics. This model not only minimizes prediction errors but also provides the most stable and consistent results, as evidenced by the lowest standard deviation in both absolute errors and absolute percentage errors. Additionally, we employed the decision tree method to analyze the conditions under which specific features yield more accurate results or less reliable outcomes. It was observed that both the size and age of an apartment significantly impact prediction performance, with smaller and older complexes exhibiting lower accuracy and higher error rates.

Keywords: stacking approaches; stacked ensemble model; ensemble model; predictive models; mass appraisal; machine learning (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/13/9/1436/pdf (application/pdf)
https://www.mdpi.com/2073-445X/13/9/1436/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:13:y:2024:i:9:p:1436-:d:1471849

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1436-:d:1471849