Evaluating Urban Heat Island Effects in the Southwestern Plateau of China: A Comparative Analysis of Nine Estimation Methods
Ziyang Ma,
Huyan Fu (),
Jianghai Wen and
Zhiru Chen
Additional contact information
Ziyang Ma: School of Earth Science, Yunnan University, Kunming 650500, China
Huyan Fu: School of Earth Science, Yunnan University, Kunming 650500, China
Jianghai Wen: School of Earth Science, Yunnan University, Kunming 650500, China
Zhiru Chen: Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
Land, 2024, vol. 14, issue 1, 1-26
Abstract:
Surface urban heat island intensity (SUHII) is a critical indicator of the urban heat island (UHI) effect. However, discrepancies in estimation methods may introduce uncertainty in SUHII values. While previous studies have examined the responses of SUHII to different methods at large scales, further analysis is needed for plateau cities in southwestern China, which have complex geographical features. This study investigates the spatiotemporal patterns and influencing factors of SUHII in 200 plateau cities across southwestern China via nine estimation methods that incorporate rural ranges and elevation-based conditions. The results show that: (1) The annual average daytime and nighttime SUHII for these cities were 0.97 ± 0.78 °C (mean ± std) and 0.21 ± 0.87 °C, respectively. For 22% of the cities during the day and 26% at night, the choice of different SUHII estimation methods resulted in the transformation between a surface urban heat island (SUHI) and a surface urban cold island (SUCI) due to the exclusion of rural pixels more than ±50 m from the median urban elevation. Compared with other regions, high-altitude plateau cities exhibited a slightly lower daytime SUHII but a significantly higher nighttime SUHII because of the lower atmospheric pressure in plateau areas, which limits the conduction and retention of heat. Consequently, heat dissipates more quickly at night, increasing SUHII values. (2) The mean ΔSUHII AD (absolute difference in SUHII values across methods) was 0.51 ± 0.01 °C during the day and 0.44 ± 0.02 °C at night. (3) In high-altitude plateau cities, for all methods, the correlation of the SUHII with influencing factors was stronger, highlighting their sensitivity to both environmental and anthropogenic influences. These results enhance our understanding of plateau UHI dynamics and highlight the importance of considering appropriate rural definitions for cities with varying geographical characteristics.
Keywords: surface urban heat island intensity; plateau cities; driving factors; comparative analysis (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2073-445X/14/1/37/pdf (application/pdf)
https://www.mdpi.com/2073-445X/14/1/37/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:14:y:2024:i:1:p:37-:d:1555039
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().