EconPapers    
Economics at your fingertips  
 

Analyzing Spatiotemporal Patterns of Cultivated Land by Integrating Aggregation Degree and Omnidirectional Connectivity: A Case Study of Daqing City, China

Yanhong Hang, Zhuocheng Zhang and Xiaoming Li ()
Additional contact information
Yanhong Hang: Department of Land Resources Management, Northeast Agricultural University, Harbin 150030, China
Zhuocheng Zhang: Department of Land Resources Management, Northeast Agricultural University, Harbin 150030, China
Xiaoming Li: Department of Computer Science and Technology, Northeast Agricultural University, Harbin 150030, China

Land, 2025, vol. 14, issue 10, 1-24

Abstract: The spatial configuration of cultivated land is crucial for modern agricultural production; therefore, research on cultivated land aggregation and spatial connectivity holds significant importance for enhancing agricultural production efficiency and ensuring food security. This study selected Daqing City, China, as the research area and constructed a three-level nested framework of “patch–local–regional” scales. The aggregation degree was calculated through landscape pattern indices and the MSPA model, and connectivity was evaluated using the Omniscape algorithm based on circuit theory to explore the spatiotemporal evolution patterns of cultivated land configuration and analyze their spatial correlations, proposing classified optimization strategies. The results indicate the following: (1) the spatiotemporal distribution characteristics of cultivated land aggregation in Daqing City exhibit a spatial pattern of “high in the north and south, low in the middle,” with an overall declining trend from 2000 to 2020; (2) high-connectivity areas are primarily distributed in Lindian County in the north and Zhaozhou and Zhaoyuan Counties in the south, while low-connectivity areas are concentrated in the central urban area and surrounding regions; (3) the aggregation degree and connectivity demonstrate positive spatial correlation, with the Global Moran’s index increasing from 0.358 in 2000 to 0.413 in 2020; and (4) based on the aggregation degree and connectivity characteristics, the study area can be classified into four types: scattered imbalance–isolated dysfunction, regular imbalance–connected dysfunction, scattered improvement–connected optimization, and regular improvement–connected optimization. This study provides new research perspectives for cultivated land protection. The proposed multi-scale aggregation–connectivity research method and classification system offer important reference value for the efficient utilization and management optimization of cultivated land.

Keywords: cultivated land; spatial pattern; multi-scale nested framework; aggregation degree; omnidirectional connectivity; Omniscape algorithm; coupling relationship (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/14/10/2000/pdf (application/pdf)
https://www.mdpi.com/2073-445X/14/10/2000/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:14:y:2025:i:10:p:2000-:d:1765503

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-15
Handle: RePEc:gam:jlands:v:14:y:2025:i:10:p:2000-:d:1765503