EconPapers    
Economics at your fingertips  
 

Analysis of Climate Change Effects on Precipitation and Temperature Trends in Spain

Blanca Arellano, Qianhui Zheng and Josep Roca ()
Additional contact information
Blanca Arellano: Department of Architectural Technology, Technical University of Catalonia, 08028 Barcelona, Spain
Qianhui Zheng: Department of Architectural Technology, Technical University of Catalonia, 08028 Barcelona, Spain
Josep Roca: Department of Architectural Technology, Technical University of Catalonia, 08028 Barcelona, Spain

Land, 2025, vol. 14, issue 1, 1-35

Abstract: The objective of this study was to analyze the climate change experienced in Spain between 1971 and 2022 and to estimate the future climate (2050). The main objectives were as follows: (1) to analyze the temporal evolution of temperature from 1971 to the present, to quantify the warming process experienced in the case study and to evaluate the increase in extreme heat events (heatwaves); (2) to study the evolution of the precipitation regime to determine whether there is a statistically representative trend towards a drier climate and an increase in extreme precipitation; (3) to investigate the interaction between annual precipitation and the continuous increase in temperature; and (4) to estimate the future climate scenario for mainland Spain and the Balearic Islands towards 2050, analyzing the trends in land aridity and predicting a possible change from a Mediterranean climate to a warm steppe climate, according to the Köppen classification. The aim of this study was to test the hypothesis that the increase in temperature resulting from the global warming process implies a tendency towards progressive drought. Given the extreme annual variability of the climate, in addition to the ordinary least squares methodology, the techniques mainly used in this study were the Mann–Kendall test and the Kendall–Theil–Sen (KTS) regression. The Mann–Kendall test confirmed the very high statistical significance of the relationship between precipitation (RR) and maximum temperature (TX). If the warming trend experienced in recent years (1971–2022) continues, it is foreseeable that, by 2050, there will be a reduction in precipitation in Spain of between 14% and 23% with respect to the precipitation of the reference period (understood as the average between 1971 and 2000). Spain’s climate is likely to change from Mediterranean to warm steppe in the Köppen classification system (from “C” to “B”).

Keywords: climate in Spain; global warming; heatwaves; drought; extreme rainfall; climate horizon 2050; Köppen’s climate classification (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/14/1/85/pdf (application/pdf)
https://www.mdpi.com/2073-445X/14/1/85/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:14:y:2025:i:1:p:85-:d:1559877

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:85-:d:1559877