Risk Assessment and Spatial Zoning of Rainstorm and Flood Hazards in Mountainous Cities Using the Random Forest Algorithm and the SCS Model
Zixin Xie and
Bo Shu ()
Additional contact information
Zixin Xie: School of Architecture and Civil Engineering, Xihua University, Chengdu 611756, China
Bo Shu: School of Design, Southwest Jiaotong University, Chengdu 611756, China
Land, 2025, vol. 14, issue 3, 1-25
Abstract:
China has a vast land area, with mountains accounting for 1/3 of the country’s land area. Flooding in these areas can cause significant damage to human life and property. Therefore, rainstorms and flood hazards in Huangshan City should be accurately assessed and effectively managed to improve urban resilience, promote green and low-carbon development, and ensure socio-economic stability. Through the Random Forest (RF) algorithm and the Soil Conservation Service (SCS) model, this study aimed to assess and demarcate rainstorm and flood hazard risks in Huangshan City. Specifically, Driving forces-Pressure-State-Impact-Response (DPSIR)’s framework was applied to examine the main influencing factors. Subsequently, the RF algorithm was employed to select 11 major indicators and establish a comprehensive risk assessment model integrating four factors: hazard, exposure, vulnerability, and adaptive capacity. Additionally, a flood hazard risk zoning map of Huangshan City was generated by combining the SCS model with a Geographic Information System (GIS)-based spatial analysis. The assessment results reveal significant spatial heterogeneity in rainstorm and flood risks, with higher risks concentrated in low-lying areas and urban fringes. In addition, precipitation during the flood season and economic losses were identified as key contributors to flood risk. Furthermore, flood risks in certain areas have intensified with ongoing urbanization. The evaluation model was validated by the 7 July 2020 flood event, suggesting that Huangshan District, Huizhou District, and northern Shexian County suffered the most severe economic losses. This confirms the reliability of the model. Finally, targeted flood disaster prevention and mitigation strategies were proposed for Huangshan City, particularly in the context of carbon neutrality and green urbanization, providing decision-making support for disaster prevention and emergency management. These recommendations will contribute to enhancing the city’s disaster resilience and promoting sustainable urban development.
Keywords: flood hazard risk assessment; random forest algorithm; SCS model; risk spatial zoning; mountainous city (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2073-445X/14/3/453/pdf (application/pdf)
https://www.mdpi.com/2073-445X/14/3/453/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:14:y:2025:i:3:p:453-:d:1597208
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().