Distribution Characteristics of Soil Organic Carbon and Active Carbon Components in the Peat Swamp Wetlands of the Altai Mountains, China
Guanghua Miao,
Yanhong Li () and
Chongru Shi
Additional contact information
Guanghua Miao: College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China
Yanhong Li: College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China
Chongru Shi: College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China
Land, 2025, vol. 14, issue 4, 1-13
Abstract:
Peat swamp wetlands, crucial carbon pools in terrestrial ecosystems, significantly impact regional carbon cycling and climate change. In this study, the peat swamp wetland in the Altay Mountains was selected as the research object. In July 2023, soil samples were collected in situ from a depth of 0–80 cm of the peat swamp wetland. Subsequently, the contents of soil organic carbon (SOC), dissolved organic carbon (DOC), particulate organic carbon (POC), and the physicochemical properties of the soil samples were determined. The distribution characteristics of soil organic carbon and its active carbon fractions at different soil depths and their influencing factors were investigated. The results demonstrate that (1) SOC, POC, and DOC concentrations were significantly higher in subsurface layers (20–80 cm) than in those of surface layers (0–20 cm), with SOC and POC peaking at 20–40 cm and DOC predominantly accumulating at 40–80 cm. (2) The concentrations of SOC, POC, and DOC reached minima at 0–10 cm, accounting for 17.25%, 16.91%, and 6.46% of the total 0–80 cm profile, respectively. POC represented 76.46% of SOC throughout the profile. (3) Available phosphorus (AP), total nitrogen (TN), ammonium nitrogen (NH 4 + N), and soil moisture (SM) accounted for an average of 68.94% of the variation in soil organic carbon and active carbon fractions at a depth of 0–80 cm. Higher levels of soil moisture and total nitrogen content emerged as the primary factors responsible for the reduction in soil organic carbon and active carbon fractions. In shallow soils (0–20 cm), an increase in the content of available phosphorus and ammonium nitrogen contributed to a decline in the soil’s active carbon fraction. Conversely, the situation was reversed in deeper soils. This study thus offers scientific insights into alpine peat bog wetland soil carbon dynamics and environmental responses.
Keywords: Harasazi peat bog wetland; soil carbon fraction; physicochemical properties; climate change (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2073-445X/14/4/670/pdf (application/pdf)
https://www.mdpi.com/2073-445X/14/4/670/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:14:y:2025:i:4:p:670-:d:1617934
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().