Spatial Coupling and Resilience Differentiation Characteristics of Landscapes in Populated Karstic Areas in Response to Landslide Disaster Risk: An Empirical Study from a Typical Karst Province in China
Huanhuan Zhou,
Sicheng Wang (),
Mingming Gao and
Guangli Zhang
Additional contact information
Huanhuan Zhou: College of Architecture and Urban Planning, Guizhou University, Guiyang 550025, China
Sicheng Wang: College of Architecture and Urban Planning, Guizhou University, Guiyang 550025, China
Mingming Gao: College of Architecture and Urban Planning, Guizhou University, Guiyang 550025, China
Guangli Zhang: College of Architecture and Urban Planning, Guizhou University, Guiyang 550025, China
Land, 2025, vol. 14, issue 4, 1-20
Abstract:
Landslides pose a significant threat to the safety and stability of settlements in karst regions worldwide. The long-standing tight balance state of settlement funding and infrastructure makes it difficult to allocate disaster prevention resources effectively against landslide impacts. There is an urgent need to fully leverage the landscape resources of karst settlements and develop landslide risk prevention strategies that balance economic viability with local landscape adaptability. However, limited research has explored the differential resilience characteristics and patterns of landslide disaster risk and settlement landscapes from a spatial coupling perspective. This study, based on landslide disaster and disaster-adaptive landscape data from a typical karst province in China, employs the frequency ratio-random forest model and weighted variance method to construct landslide disaster risk (LDR) and disaster-adaptive landscape (DAL) base maps. The spatial characteristics of urban, urban–rural transition zones, and rural settlements were analyzed, and the resilience differentiation and driving factors of the LDR–DAL coupling relationship were assessed using bivariate spatial autocorrelation and geographical detector models. The key findings are as follows: (1) Urban and peri-urban settlements exhibit a high degree of spatial congruence in the differentiation of LDR and DAL, whereas rural settlements exhibit distinct divergence; (2) the Moran’s I index for LDR and DAL is 0.0818, indicating that urban and peri-urban settlements predominantly cluster in H-L and L-L types, whereas rural settlements primarily exhibit H-H and L-H patterns; (3) slope, soil organic matter, and profile curvature are key determinants of LDR–DAL coupling, with respective influence strengths of 0.568, 0.555, and 0.384; (4) in karst settlement development, augmenting local vegetation in residual mountain areas and parks can help maintain forest ecosystem stability, effectively mitigating landslide risks and enhancing disaster-adaptive capacity by 6.77%. This study helps alleviate the contradiction between high LDR and weak disaster-adaptive resources in the karst region of Southwest China, providing strategic references for global karst settlements to enhance localized landscape adaptation to landslide disasters.
Keywords: landslide disaster risk; disaster-adaptive landscape; karst region; spatial differentiation; coupling coordination (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2073-445X/14/4/847/pdf (application/pdf)
https://www.mdpi.com/2073-445X/14/4/847/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:14:y:2025:i:4:p:847-:d:1633744
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().