EconPapers    
Economics at your fingertips  
 

Investigation and Monitoring of Sinkhole Subsidence and Collapse: Additional Data on the Case Study in Alcalá de Ebro (Zaragoza, Spain)

Alberto Gracia (), Francisco Javier Torrijo, Alberto García and Alberto Boix
Additional contact information
Alberto Gracia: Associated Technical Consultants, C.T.A., S.A.P., 50006 Zaragoza, Spain
Francisco Javier Torrijo: Department of Transportation and Geotechnical Engineering, Research Centre for Architecture, Heritage and Management for Sustainable Development (PEGASO), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Alberto García: Associated Technical Consultants, C.T.A., S.A.P., 50006 Zaragoza, Spain
Alberto Boix: Department of Transportation and Geotechnical Engineering, Research Centre for Architecture, Heritage and Management for Sustainable Development (PEGASO), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Land, 2025, vol. 14, issue 5, 1-20

Abstract: Alcalá de Ebro is located 35 km northwest of the city of Zaragoza, on the right bank of the Ebro River at the outlet of a ravine (Juan Gastón) towards the river, with a catchment area of more than 230 km 2 . Over time, urbanisation and agricultural development have eliminated the last stretch of the drainage channel, and these water inputs have been channelled underground, filtering through the ground. This section of the Ebro Valley rests on a marly tertiary substratum, which promotes dissolution-subbing processes that can lead to sinkholes. The ground tends to sink gradually or suddenly collapse. Many studies have been carried out to understand not only the origin of the phenomenon but also its geometry and the area affected by it in the town of Alcalá de Ebro. In this sense, it has been possible to model an area around the main access road, where numerous collapsing sinkholes have been found, blocking the road and affecting houses. It also affects the embankment that protects the town from the floods of the river Ebro. These studies have provided specific knowledge, enabling us to evaluate and implement underground consolidation measures, which have shown apparent success. Several injection campaigns have been carried out, initially with expansion resins and finally with columnar development, using special low-mobility mortars to fill and consolidate the undermined areas and prevent new subsidence. These technical solutions propose a method of ground treatment that we believe is novel for this type of geological process. The results have been satisfactory, but it is considered necessary to continue monitoring the situation and to extend attention to a wider area to prevent, as far as possible, new problems of subsidence and collapse. In this sense, the objective is to continue the control and monitoring of possible phenomena related to subsidence problems in the affected area and its immediate surroundings, to detect and, if necessary, anticipate subsidence or collapse phenomena that could affect the body of the embankment.

Keywords: collapse hazard; sinkhole mitigation; gypsum karst; injections; geogrid; evaporitic rocks; topographic auscultation (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/14/5/1006/pdf (application/pdf)
https://www.mdpi.com/2073-445X/14/5/1006/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:14:y:2025:i:5:p:1006-:d:1649775

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-07
Handle: RePEc:gam:jlands:v:14:y:2025:i:5:p:1006-:d:1649775