EconPapers    
Economics at your fingertips  
 

Dynamic Wetland Evolution in the Upper Yellow River Basin: A 30-Year Spatiotemporal Analysis and Future Projections Under Multiple Protection Scenarios

Zheng Liu, Chunlin Huang (), Ting Zhou, Tianwen Feng and Qiang Bie
Additional contact information
Zheng Liu: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
Chunlin Huang: Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Ting Zhou: Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Tianwen Feng: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
Qiang Bie: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China

Land, 2025, vol. 14, issue 6, 1-24

Abstract: Wetland monitoring is a key means of protecting wetland ecosystems. In order to achieve continuous monitoring of wetlands and predict future patterns, this paper analyzes the spatiotemporal evolution characteristics of wetlands in the upper reaches of the Yellow River from 1990 to 2020, and uses the Patch Generation Land Use Simulation (PLUS) model to simulate the spatial distribution of wetlands from 2040 to 2060 under four scenarios: farmland protection (FPS), wetland protection (WPS), comprehensive protection (CPS) and natural development (NDS). The results show that the total area of wetlands in the upper reaches of the Yellow River is on the rise, increasing by 7.12% in 2020 compared with 1990. The changes in various types of wetlands are different: the areas of river and canals increased by 26.39% and 57.97%, respectively, paddy fields increased by 7.95%, lakes remained basically stable, and tidal flats decreased by 5.67%. The simulation results of the future spatial pattern of wetlands show that: under the FPS scenario, farmland and related land use will expand significantly, mainly through the development of beaches, dry land and unused land, while under the WPS scenario, wetlands will be strictly protected, the area of water resource features such as rivers, lakes and reservoirs will increase significantly, and land use changes will be more ecologically oriented. Compared with the CPS and NDS scenarios, the wetland protection and urbanization process in the upper reaches of the Yellow River can be balanced under the FPS and WPS scenarios. This study has important reference value for the protection and sustainable development of wetland ecosystems in the upper reaches of the Yellow River.

Keywords: land use multi-scenario simulation; PLUS model; Yellow River upper; spatiotemporal feature monitoring; wetland (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/14/6/1219/pdf (application/pdf)
https://www.mdpi.com/2073-445X/14/6/1219/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:14:y:2025:i:6:p:1219-:d:1672929

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-28
Handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1219-:d:1672929