EconPapers    
Economics at your fingertips  
 

Impact of Urbanization on Surface Temperature in Morocco: A Multi-City Comparative Study

Mohamed Amine Lachkham, Lahouari Bounoua (), Noura Ed-dahmany and Mohammed Yacoubi Khebiza
Additional contact information
Mohamed Amine Lachkham: Laboratory of Water Sciences, Microbial Biotechnologies, and Natural Resources Sustainability (AQUABIOTECH), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
Lahouari Bounoua: Biospheric Sciences Laboratory, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD 20771, USA
Noura Ed-dahmany: Laboratory of Water Sciences, Microbial Biotechnologies, and Natural Resources Sustainability (AQUABIOTECH), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
Mohammed Yacoubi Khebiza: Laboratory of Water Sciences, Microbial Biotechnologies, and Natural Resources Sustainability (AQUABIOTECH), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco

Land, 2025, vol. 14, issue 6, 1-22

Abstract: Morocco, like many nations undergoing significant economic and social transformation, is experiencing rapid urbanization alongside an ongoing rural exodus. This, coupled with the country’s diverse climate and heterogeneous geography, warrants a detailed exploration of urbanization’s effect on surface climate. Utilizing the Simple Biosphere (SiB2) model’s simulated surface temperature, this study analyses summer’s urban heat structure of seven Moroccan urban areas and their surroundings, assessing the urban impact on surface temperature at the city center, and the intensity and spatial distribution of the urban heat island (UHI) effect at different spatial resolutions. Results show wide-ranging dissimilarities in urban thermal profiles, with the maximum UHI intensity recorded at 8.7 °C in the Dakhla peninsula. Urban heat sink (UHS) effects were observed in six of the seven studied cities, with Marrakech being the exception, only exhibiting UHI effects. A more detailed examination of the thermal profile in Rabat’s metropole at a finer scale, using Landsat-observed land surface temperature (LST), yields additional insights into UHI characteristics, and the findings are contrasted with the existing literature to provide broader insights. The implications of this study strongly resonate within the Moroccan context and its neighboring regions with similar environmental and socio-economic features and should aid in the development of sustainable regional urban planning.

Keywords: urban climate; urban heat island; urban heat sink; land surface temperature; urbanization; impervious surface area; MODIS; Landsat; Morocco (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/14/6/1280/pdf (application/pdf)
https://www.mdpi.com/2073-445X/14/6/1280/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:14:y:2025:i:6:p:1280-:d:1679404

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-16
Handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1280-:d:1679404