Assessing the Impact of Urban Spatial Form on Land Surface Temperature Using Random Forest—Taking Beijing as a Case Study
Ruizi He,
Jiahui Wang and
Dongyun Liu ()
Additional contact information
Ruizi He: School of Landscape Architecture, Beijing Forestry University, Beijing 100080, China
Jiahui Wang: School of Landscape Architecture, Beijing Forestry University, Beijing 100080, China
Dongyun Liu: School of Landscape Architecture, Beijing Forestry University, Beijing 100080, China
Land, 2025, vol. 14, issue 8, 1-21
Abstract:
To examine the integrated influence of urban spatial form on the urban heat island (UHI) effect, this study selects the area within Beijing’s Fifth Ring Road as a case study. A multiscale grid system is established to quantify fourteen two- and three-dimensional morphological indicators. A Random Forest algorithm is employed to assess the relative importance of each factor. The optimal analytical scale for each key variable is then identified, and its nonlinear relationship with land surface temperature (LST) is analyzed at that scale. The main findings are as follows: (1) The Random Forest model achieves the highest predictive accuracy at a 600 m scale, significantly outperforming traditional linear models by effectively addressing multicollinearity. This suggests that machine learning offers robust technical support for UHI research. (2) Form variables exhibit distinct scale dependencies. Two-dimensional indicators dominate at medium to large scales, while three-dimensional indicators are more influential at smaller scales. Specifically, the mean building height is most significant at the 150 m scale, the standard deviation of building height at 300 m, and the impervious surface fraction at 600–1200 m. (3) Strong nonlinear effects are identified. The bare soil fraction below 0.12 intensifies surface warming; the water body fraction between 0.20 and 0.35 provides the strongest cooling; plant coverage offers maximum cooling between 0.25 and 0.45; building density cools below 0.3 buildings/hm 2 but contributes to warming beyond this threshold; building coverage ratio generates the greatest warming between 0.08 and 0.32; height variability provides optimal cooling between 8 m and 40 m; and mean building height shows a positive correlation with LST below 6 m but a negative one above that height.
Keywords: urban heat island; random forest; spatial form; scale effect (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2073-445X/14/8/1639/pdf (application/pdf)
https://www.mdpi.com/2073-445X/14/8/1639/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:14:y:2025:i:8:p:1639-:d:1723901
Access Statistics for this article
Land is currently edited by Ms. Carol Ma
More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().