EconPapers    
Economics at your fingertips  
 

AI-Enhanced Remote Sensing of Land Transformations for Climate-Related Financial Risk Assessment in Housing Markets: A Review

Chuanrong Zhang () and Xinba Li
Additional contact information
Chuanrong Zhang: Department of Geography & Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT 06269, USA
Xinba Li: Department of Geography & Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT 06269, USA

Land, 2025, vol. 14, issue 8, 1-39

Abstract: Amid accelerating climate change, climate-related hazards—such as floods, wildfires, hurricanes, and sea-level rise—increasingly drive land transformations and pose growing risks to housing markets by affecting property valuations, insurance availability, mortgage performance, and broader financial stability. This review synthesizes recent progress in two distinct domains and their linkage: (1) assessing climate-related financial risks in housing markets, and (2) applying AI-driven remote sensing for hazard detection and land transformation monitoring. While both areas have advanced significantly, important limitations remain. Existing housing finance studies often rely on static models and coarse spatial data, lacking integration with real-time environmental information, thereby reducing their predictive power and policy relevance. In parallel, remote sensing studies using AI primarily focus on detecting physical hazards and land surface changes, yet rarely connect these spatial transformations to financial outcomes. To address these gaps, this review proposes an integrative framework that combines AI-enhanced remote sensing technologies with financial econometric modeling to improve the accuracy, timeliness, and policy relevance of climate-related risk assessment in housing markets. By bridging environmental hazard data—including land-based indicators of exposure and damage—with financial indicators, the framework enables more granular, dynamic, and equitable assessments than conventional approaches. Nonetheless, its implementation faces technical and institutional barriers, including spatial and temporal mismatches between datasets, fragmented regulatory and behavioral inputs, and the limitations of current single-task AI models, which often lack transparency. Overcoming these challenges will require innovation in AI modeling, improved data-sharing infrastructures, and stronger cross-disciplinary collaboration.

Keywords: artificial intelligence (AI); remote sensing; climate change; hazards; housing; financial risk; machine learning; deep learning (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/14/8/1672/pdf (application/pdf)
https://www.mdpi.com/2073-445X/14/8/1672/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:14:y:2025:i:8:p:1672-:d:1727543

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-08-20
Handle: RePEc:gam:jlands:v:14:y:2025:i:8:p:1672-:d:1727543