EconPapers    
Economics at your fingertips  
 

Spatiotemporal Variations in Grain Yields and Their Responses to Climatic Factors in Northeast China During 1993–2022

Ruiqiu Pang, Dongqi Sun and Weisong Sun ()
Additional contact information
Ruiqiu Pang: Jangho Architecture College, Northeastern University, Shenyang 110169, China
Dongqi Sun: Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Weisong Sun: Jangho Architecture College, Northeastern University, Shenyang 110169, China

Land, 2025, vol. 14, issue 8, 1-26

Abstract: Global warming impacts agricultural production and food security, particularly in high-latitude regions with high temperature sensitivity. As a major grain-producing area in China and one of the fastest-warming regions globally, Northeast China (NEC) has received considerable research attention. However, the existing literature lacks sufficient exploration of the spatiotemporal heterogeneity in climate change impacts. Based on data on rice, corn, and soybean yields, as well as temperature, rainfall, and sunshine duration in NEC from 1993 to 2022, this study employs Sen’s slope estimation, the Mann–Kendall (MK) test, spatial autocorrelation analysis, and the Geographically and Temporally Weighted Regression (GTWR) model to analyze the spatiotemporal evolution of grain yields and their responses to climate change. The results show that ① 1993–2022 witnessed an overall rise in grain yields per unit area in NEC, with Liaoning growing fastest. Rice yields increased regionally; corn yields rose in Liaoning and Jilin, while soybean yields increased only in Liaoning. During the growing season, rainfall trended upward with fluctuations, temperatures rose steadily, and sunshine duration declined in Heilongjiang. ② Except for corn and soybeans in the early period, other crops exhibited significant yield spatial agglomeration. High–high agglomeration areas first expanded, then shrank, eventually shifting northward to the region of Jilin Province. ③ Climatic factors show marked spatiotemporal heterogeneity in impacts: positive effect areas of rainfall and temperature expanded northward; sunshine duration’s influence weakened, but its negative effect areas spread. ④ Differences in crop responses are closely linked to their physiological characteristics, regional climate evolution, and agricultural adaptation measures. This study provides a scientific basis for formulating region-specific agricultural adaptation strategies to address climate change in NEC.

Keywords: climate change; grain yield; geographically and temporally weighted regression; spatiotemporal heterogeneity (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2073-445X/14/8/1693/pdf (application/pdf)
https://www.mdpi.com/2073-445X/14/8/1693/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:14:y:2025:i:8:p:1693-:d:1729390

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-08-22
Handle: RePEc:gam:jlands:v:14:y:2025:i:8:p:1693-:d:1729390