EconPapers    
Economics at your fingertips  
 

Comparison of Statistical Approaches for Modelling Land-Use Change

Bo Sun and Derek T. Robinson
Additional contact information
Bo Sun: Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON N2L 3G1, Canada
Derek T. Robinson: Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Land, 2018, vol. 7, issue 4, 1-33

Abstract: Land-use change can have local-to-global environment impacts such as loss of biodiversity and climate change as well as social-economic impacts such as social inequality. Models that are built to analyze land-use change can help us understand the causes and effects of change, which can provide support and evidence to land-use planning and land-use policies to eliminate or alleviate potential negative outcomes. A variety of modelling approaches have been developed and implemented to represent land-use change, in which statistical methods are often used in the classification of land use as well as to test hypotheses about the significance of potential drivers of land-use change. The utility of statistical models is found in the ease of their implementation and application as well as their ability to provide a general representation of land-use change given a limited amount of time, resources, and data. Despite the use of many different statistical methods for modelling land-use change, comparison among more than two statistical methods is rare and an evaluation of the performance of a combination of different statistical methods with the same dataset is lacking. The presented research fills this gap in land-use modelling literature using four statistical methods—Markov chain, logistic regression, generalized additive models and survival analysis—to quantify their ability to represent land-use change. The four methods were compared across three dimensions: accuracy (overall and by land-use type), sample size, and spatial independence via conventional and spatial cross-validation. Our results show that the generalized additive model outperformed the other three models in terms of overall accuracy and was the best for modelling most land-use changes with both conventional and spatial cross-validation regardless of sample size. Logistic regression and survival analysis were more accurate for specific land-use types, and Markov chain was able to represent those changes that could not be modeled by other approaches due to sample size restrictions. Spatial cross-validation accuracies were slightly lower than the conventional cross-validation accuracies. Our results demonstrate that not only is the choice of model by land-use type more important than sample size, but also that a hybrid land-use model comprising the best statistical modelling approaches for each land-use change can outperform individual statistical approaches. While Markov chain was not competitive, it was useful in providing representation using other methods or in other cases where there is no predictor data.

Keywords: land-use change model; Markov chain; logistic regression; generalized additive model; survival analysis; spatial cross validation (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2073-445X/7/4/144/pdf (application/pdf)
https://www.mdpi.com/2073-445X/7/4/144/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:7:y:2018:i:4:p:144-:d:185279

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:7:y:2018:i:4:p:144-:d:185279