EconPapers    
Economics at your fingertips  
 

Utilizing Remotely Sensed Observations to Estimate the Urban Heat Island Effect at a Local Scale: Case Study of a University Campus

Abdullah Addas, Ran Goldblatt and Steven Rubinyi
Additional contact information
Abdullah Addas: Landscape Architecture Department, Faculty of Architecture & Planning, King Abdulaziz University, P.O. Box 80210, Jeddah 21589, Saudi Arabia
Ran Goldblatt: New Light Technologies Inc., Washington, DC 20005, USA
Steven Rubinyi: Urban, Disaster Risk Management, Resilience, and Land Global Practice, The World Bank, Washington, DC 20433, USA

Land, 2020, vol. 9, issue 6, 1-26

Abstract: The urban heat island (UHI) effect has become a significant focus of research in today’s era of climate change, and a key consideration for the next generation of urban planning focused on green and livable cities. UHI has traditionally been measured using in situ data and ground-based measurements. However, with the increased availability of satellite-based thermal observations of the Earth, remotely sensed observations are increasingly being utilized to estimate surface urban heat island (SUHI), using land surface temperature (LST) as a critical indicator, due to its spatial coverage. In this study, we estimated LST based on Landsat-8 observations to demonstrate the relationship between LST and the characteristics of the land use and land cover on the campus of King Abdulaziz University (KAU), Jeddah, Saudi Arabia. We found a consistent variation of between 7 and 9 degrees Celsius for LST across campus, spanning all summer and winter seasons between 2014 and 2019. The LST correlates strongly with both green vegetation and built-up land cover, with a slightly stronger correlation with the latter. The relationship between LST and green vegetation has a notable seasonality, with higher correlation in the summer seasons compared to the winter seasons. Our study also found an overall increase in LST between 2014 and 2019, due to intentional changes in the built-up land cover, for example from the conversion of natural green surfaces to artificial surfaces. The findings of this study highlight the utility of the remotely sensed observation of LST to assess the SUHI phenomenon and can be used to inform future planning aimed at securing green and livable urban areas in the face of a changing climate.

Keywords: remote sensing; Landsat; land surface temperature; urban heat island; sustainable planning (search for similar items in EconPapers)
JEL-codes: Q15 Q2 Q24 Q28 Q5 R14 R52 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.mdpi.com/2073-445X/9/6/191/pdf (application/pdf)
https://www.mdpi.com/2073-445X/9/6/191/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlands:v:9:y:2020:i:6:p:191-:d:369567

Access Statistics for this article

Land is currently edited by Ms. Carol Ma

More articles in Land from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlands:v:9:y:2020:i:6:p:191-:d:369567