EconPapers    
Economics at your fingertips  
 

Modeling the Truck Appointment System as a Multi-Player Game

Mohammad Torkjazi, Nathan Huynh and Ali Asadabadi
Additional contact information
Mohammad Torkjazi: Civil & Environmental Engineering, University of South Carolina, Columbia, SC 29208, USA
Nathan Huynh: Civil & Environmental Engineering, University of South Carolina, Columbia, SC 29208, USA
Ali Asadabadi: Supply Chain Analytics, Nestlé USA, Arlington, VA 22209, USA

Logistics, 2022, vol. 6, issue 3, 1-25

Abstract: Background: Random truck arrivals at maritime container terminals are one of the primary reasons for gate congestion. Gate congestion negatively affects the terminal’s and drayage firms’ productivity and the surrounding communities in terms of air pollution and noise. To alleviate gate congestion, more and more terminals in the USA are utilizing a truck appointment system (TAS). Methods: This paper proposes a novel approach to modeling the truck appointment system problem. Unlike previous studies which largely treated this problem as a single-player game, this study explicitly models the interplay between the terminal and drayage firms with regard to appointments. A multi-player bi-level programming model is proposed, where the terminal functions as the leader at the upper-level and the drayage firms function as followers at the lower-level. The objective of the leader (the terminal) is to minimize the gate waiting cost of trucks by spreading out the truck arrivals, and the objective of the followers (drayage firms) is to minimize their own drayage cost. To make the model tractable, the bi-level model is transformed to a single-level problem by replacing the lower-level problem with its equivalent Karush–Kuhn–Tucker (KKT) conditions and the model is solved by finding the Stackelberg equilibrium in one-shot simultaneous-moves among players. For comparison purposes, a single-player version of the TAS model is also developed. Results: Experimental results indicate that the proposed multi-player model yields a lower gate-waiting cost compared to the single-player model, and that it yields higher cost savings for the drayage firms as the number of appointments per truck increases. Moreover, the solution of the multi-player model is not dependent on the objective function coefficients, unlike the single player model. Conclusions: This study demonstrates that a TAS is more effective if it considers how the assigned appointment slot affects a truck’s drayage cost. It is recommended that terminal operators and port authorities initiate conversations with their TAS providers about incorporating this element into their TAS.

Keywords: maritime container terminal; truck appointment system; game theory; multi-player optimization; bi-level mathematical program; port congestion (search for similar items in EconPapers)
JEL-codes: L8 L80 L81 L86 L87 L9 L90 L91 L92 L93 L98 L99 M1 M10 M11 M16 M19 R4 R40 R41 R49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2305-6290/6/3/53/pdf (application/pdf)
https://www.mdpi.com/2305-6290/6/3/53/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlogis:v:6:y:2022:i:3:p:53-:d:868683

Access Statistics for this article

Logistics is currently edited by Ms. Mavis Li

More articles in Logistics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlogis:v:6:y:2022:i:3:p:53-:d:868683