EconPapers    
Economics at your fingertips  
 

Exploring Applications and Practical Examples by Streamlining Material Requirements Planning (MRP) with Python

João Reis ()
Additional contact information
João Reis: Industrial Engineering and Management, Faculty of Engineering, Lusófona University, 1749-024 Lisbon, Portugal

Logistics, 2023, vol. 7, issue 4, 1-19

Abstract: Background : Material Requirements Planning (MRP) is critical in Supply Chain Management (SCM), facilitating effective inventory management and meeting production demands in the manufacturing sector. Despite the potential benefits of automating the MRP tasks to meet the demand for expedited and efficient management, the field appears to be lagging behind in harnessing the advancements offered by Artificial Intelligence (AI) and sophisticated programming languages. Consequently, this study aims to address this gap by exploring the applications of Python in simplifying the MRP processes. Methods : This article offers a twofold approach: firstly, it conducts research to uncover the potential applications of the Python code in streamlining the MRP operations, and the practical examples serve as evidence of Python’s efficacy in simplifying the MRP tasks; secondly, this article introduces a conceptual framework that showcases the Python ecosystem, highlighting libraries and structures that enable efficient data manipulation, analysis, and optimization techniques. Results : This study presents a versatile framework that integrates a variety of Python tools, including but not limited to Pandas, Matplotlib, and Plotly, to streamline and actualize an 8-step MRP process. Additionally, it offers preliminary insights into the integration of the Python-based MRP solution (MRP.py) with Enterprise Resource Planning (ERP) systems. Conclusions : While the article focuses on demonstrating the practicality of Python in MRP, future endeavors will entail empirically integrating MRP.py with the ERP systems in small- and medium-sized companies. This integration will establish real-time data synchronization between the Python and ERP systems, leading to accurate MRP calculations and enhanced decision-making processes.

Keywords: data analysis; decision-making process; enterprise resource planning; inventory management; material requirements planning; Python; real-time data synchronization; supply chain management (search for similar items in EconPapers)
JEL-codes: L8 L80 L81 L86 L87 L9 L90 L91 L92 L93 L98 L99 M1 M10 M11 M16 M19 R4 R40 R41 R49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2305-6290/7/4/91/pdf (application/pdf)
https://www.mdpi.com/2305-6290/7/4/91/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlogis:v:7:y:2023:i:4:p:91-:d:1292513

Access Statistics for this article

Logistics is currently edited by Ms. Mavis Li

More articles in Logistics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlogis:v:7:y:2023:i:4:p:91-:d:1292513