EconPapers    
Economics at your fingertips  
 

Fog Computing and Industry 4.0 for Newsvendor Inventory Model Using Attention Mechanism and Gated Recurrent Unit

Joaquin Gonzalez (), Liliana Avelar Sosa, Gabriel Bravo, Oliverio Cruz-Mejia and Jose-Manuel Mejia-Muñoz ()
Additional contact information
Joaquin Gonzalez: Departamento de Ingeniería Eléctrica y Computación, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico
Liliana Avelar Sosa: Departamento de Ingeniería Industrial y Manufactura, Instituto de Ingeniera y Tecnologa, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico
Gabriel Bravo: Departamento de Ingeniería Eléctrica y Computación, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico
Oliverio Cruz-Mejia: Departamento de Ingeniería Industrial, FES Aragón, Universidad Nacional Autónoma de México, México 57171, Mexico
Jose-Manuel Mejia-Muñoz: Departamento de Ingeniería Eléctrica y Computación, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico

Logistics, 2024, vol. 8, issue 2, 1-14

Abstract: Background : Efficient inventory management is critical for sustainability in supply chains. However, maintaining adequate inventory levels becomes challenging in the face of unpredictable demand patterns. Furthermore, the need to disseminate demand-related information throughout a company often relies on cloud services. However, this method sometimes encounters issues such as limited bandwidth and increased latency. Methods : To address these challenges, our study introduces a system that incorporates a machine learning algorithm to address inventory-related uncertainties arising from demand fluctuations. Our approach involves the use of an attention mechanism for accurate demand prediction. We combine it with the Newsvendor model to determine optimal inventory levels. The system is integrated with fog computing to facilitate the rapid dissemination of information throughout the company. Results : In experiments, we compare the proposed system with the conventional demand estimation approach based on historical data and observe that the proposed system consistently outperformed the conventional approach. Conclusions : This research introduces an inventory management system based on a novel deep learning architecture that integrates the attention mechanism with cloud computing to address the Newsvendor problem. Experiments demonstrate the better accuracy of this system in comparison to existing methods. More studies should be conducted to explore its applicability to other demand modeling scenarios.

Keywords: attention mechanism; Gated Recurrent Unit; Industry 4.0; Newsvendor model; fog computing; inventory management (search for similar items in EconPapers)
JEL-codes: L8 L80 L81 L86 L87 L9 L90 L91 L92 L93 L98 L99 M1 M10 M11 M16 M19 R4 R40 R41 R49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2305-6290/8/2/56/pdf (application/pdf)
https://www.mdpi.com/2305-6290/8/2/56/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlogis:v:8:y:2024:i:2:p:56-:d:1407867

Access Statistics for this article

Logistics is currently edited by Ms. Mavis Li

More articles in Logistics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlogis:v:8:y:2024:i:2:p:56-:d:1407867