EconPapers    
Economics at your fingertips  
 

Optimizing a Dynamic Vehicle Routing Problem with Deep Reinforcement Learning: Analyzing State-Space Components

Anna Konovalenko and Lars Magnus Hvattum ()
Additional contact information
Anna Konovalenko: Faculty of Logistics, Molde University College, 6410 Molde, Norway
Lars Magnus Hvattum: Faculty of Logistics, Molde University College, 6410 Molde, Norway

Logistics, 2024, vol. 8, issue 4, 1-18

Abstract: Background: The dynamic vehicle routing problem (DVRP) is a complex optimization problem that is crucial for applications such as last-mile delivery. Our goal is to develop an application that can make real-time decisions to maximize total performance while adapting to the dynamic nature of incoming orders. We formulate the DVRP as a vehicle routing problem where new customer requests arrive dynamically, requiring immediate acceptance or rejection decisions. Methods: This study leverages reinforcement learning (RL), a machine learning paradigm that operates via feedback-driven decisions, to tackle the DVRP. We present a detailed RL formulation and systematically investigate the impacts of various state-space components on algorithm performance. Our approach involves incrementally modifying the state space, including analyzing the impacts of individual components, applying data transformation methods, and incorporating derived features. Results: Our findings demonstrate that a carefully designed state space in the formulation of the DVRP significantly improves RL performance. Notably, incorporating derived features and selectively applying feature transformation enhanced the model’s decision-making capabilities. The combination of all enhancements led to a statistically significant improvement in the results compared with the basic state formulation. Conclusions: This research provides insights into RL modeling for DVRPs, highlighting the importance of state-space design. The proposed approach offers a flexible framework that is applicable to various variants of the DVRP, with potential for validation using real-world data.

Keywords: dynamic vehicle routing problem; Markov decision process; deep reinforcement learning; last-mile delivery (search for similar items in EconPapers)
JEL-codes: L8 L80 L81 L86 L87 L9 L90 L91 L92 L93 L98 L99 M1 M10 M11 M16 M19 R4 R40 R41 R49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2305-6290/8/4/96/pdf (application/pdf)
https://www.mdpi.com/2305-6290/8/4/96/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlogis:v:8:y:2024:i:4:p:96-:d:1491122

Access Statistics for this article

Logistics is currently edited by Ms. Mavis Li

More articles in Logistics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jlogis:v:8:y:2024:i:4:p:96-:d:1491122