A Data-Driven Approach Using Recurrent Neural Networks for Material Demand Forecasting in Manufacturing
Jorge Antonio Orozco Torres (),
Alejandro Medina Santiago (),
José R. García-Martínez,
Betty Yolanda López-Zapata,
Jorge Antonio Mijangos López,
Oscar Javier Rincón Zapata and
Jesús Alejandro Avitia López
Additional contact information
Jorge Antonio Orozco Torres: Departamento de Ingeniería Industrial, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, Tuxtla Gutiérrez 29050, Mexico
Alejandro Medina Santiago: SECIHTI-National Institute for Astrophysics, Optics and Electronics, Computer Science Coordination, Puebla 72840, Mexico
José R. García-Martínez: Laboratorio de Control y Robótica, Facultad de Ingeniería en Electrónica y Comunicaciones, Universidad Veracruzana, Poza Rica 93390, Mexico
Betty Yolanda López-Zapata: Dirección de Ingeniería Biomédica, Universidad Politecnica de Chiapas, Carretera Tuxtla Gutierrez-Portillo Zaragoza Km 21+500, Las Brisas, Suchiapa 29150, Mexico
Jorge Antonio Mijangos López: Departamento de Ingeniería Industrial, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, Tuxtla Gutiérrez 29050, Mexico
Oscar Javier Rincón Zapata: Departamento de Ingeniería Industrial, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, Tuxtla Gutiérrez 29050, Mexico
Jesús Alejandro Avitia López: Departamento de Ingeniería Industrial, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, Tuxtla Gutiérrez 29050, Mexico
Logistics, 2025, vol. 9, issue 3, 1-17
Abstract:
Background : In the current context of increasing competitiveness and complexity in markets, accurate demand forecasting has become a key element for efficient production planning. Methods : This study implements recurrent neural networks (RNNs) to predict raw material demand using historical sales data, leveraging their ability to identify complex temporal patterns by analyzing 156 historical records. Results : The findings reveal that the RNN-based model significantly outperforms traditional methods in predictive accuracy when sufficient data is available. Conclusions : Although integration with MRP systems is not explored, the results demonstrate the potential of this deep learning approach to improve decision-making in production management, offering an innovative solution for increasingly dynamic and demanding industrial environments.
Keywords: analytics; forecasting; demand; neural networks; manufacturing; data-driven (search for similar items in EconPapers)
JEL-codes: L8 L80 L81 L86 L87 L9 L90 L91 L92 L93 L98 L99 M1 M10 M11 M16 M19 R4 R40 R41 R49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2305-6290/9/3/130/pdf (application/pdf)
https://www.mdpi.com/2305-6290/9/3/130/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jlogis:v:9:y:2025:i:3:p:130-:d:1748572
Access Statistics for this article
Logistics is currently edited by Ms. Mavis Li
More articles in Logistics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().