EconPapers    
Economics at your fingertips  
 

A Data-Driven Approach Using Recurrent Neural Networks for Material Demand Forecasting in Manufacturing

Jorge Antonio Orozco Torres (), Alejandro Medina Santiago (), José R. García-Martínez, Betty Yolanda López-Zapata, Jorge Antonio Mijangos López, Oscar Javier Rincón Zapata and Jesús Alejandro Avitia López
Additional contact information
Jorge Antonio Orozco Torres: Departamento de Ingeniería Industrial, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, Tuxtla Gutiérrez 29050, Mexico
Alejandro Medina Santiago: SECIHTI-National Institute for Astrophysics, Optics and Electronics, Computer Science Coordination, Puebla 72840, Mexico
José R. García-Martínez: Laboratorio de Control y Robótica, Facultad de Ingeniería en Electrónica y Comunicaciones, Universidad Veracruzana, Poza Rica 93390, Mexico
Betty Yolanda López-Zapata: Dirección de Ingeniería Biomédica, Universidad Politecnica de Chiapas, Carretera Tuxtla Gutierrez-Portillo Zaragoza Km 21+500, Las Brisas, Suchiapa 29150, Mexico
Jorge Antonio Mijangos López: Departamento de Ingeniería Industrial, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, Tuxtla Gutiérrez 29050, Mexico
Oscar Javier Rincón Zapata: Departamento de Ingeniería Industrial, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, Tuxtla Gutiérrez 29050, Mexico
Jesús Alejandro Avitia López: Departamento de Ingeniería Industrial, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, Tuxtla Gutiérrez 29050, Mexico

Logistics, 2025, vol. 9, issue 3, 1-17

Abstract: Background : In the current context of increasing competitiveness and complexity in markets, accurate demand forecasting has become a key element for efficient production planning. Methods : This study implements recurrent neural networks (RNNs) to predict raw material demand using historical sales data, leveraging their ability to identify complex temporal patterns by analyzing 156 historical records. Results : The findings reveal that the RNN-based model significantly outperforms traditional methods in predictive accuracy when sufficient data is available. Conclusions : Although integration with MRP systems is not explored, the results demonstrate the potential of this deep learning approach to improve decision-making in production management, offering an innovative solution for increasingly dynamic and demanding industrial environments.

Keywords: analytics; forecasting; demand; neural networks; manufacturing; data-driven (search for similar items in EconPapers)
JEL-codes: L8 L80 L81 L86 L87 L9 L90 L91 L92 L93 L98 L99 M1 M10 M11 M16 M19 R4 R40 R41 R49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2305-6290/9/3/130/pdf (application/pdf)
https://www.mdpi.com/2305-6290/9/3/130/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jlogis:v:9:y:2025:i:3:p:130-:d:1748572

Access Statistics for this article

Logistics is currently edited by Ms. Mavis Li

More articles in Logistics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-09-17
Handle: RePEc:gam:jlogis:v:9:y:2025:i:3:p:130-:d:1748572