EconPapers    
Economics at your fingertips  
 

Bayesian Framework for Multi-Wave COVID-19 Epidemic Analysis Using Empirical Vaccination Data

Jiawei Xu and Yincai Tang
Additional contact information
Jiawei Xu: Department of Statistics, East China Normal University, Shanghai 200062, China
Yincai Tang: Department of Statistics, East China Normal University, Shanghai 200062, China

Mathematics, 2021, vol. 10, issue 1, 1-22

Abstract: The COVID-19 pandemic has highlighted the necessity of advanced modeling inference using the limited data of daily cases. Tracking a long-term epidemic trajectory requires explanatory modeling with more complexities than the one with short-time forecasts, especially for the highly vaccinated scenario in the latest phase. With this work, we propose a novel modeling framework that combines an epidemiological model with Bayesian inference to perform an explanatory analysis on the spreading of COVID-19 in Israel. The Bayesian inference is implemented on a modified SEIR compartmental model supplemented by real-time vaccination data and piecewise transmission and infectious rates determined by change points. We illustrate the fitted multi-wave trajectory in Israel with the checkpoints of major changes in publicly announced interventions or critical social events. The result of our modeling framework partly reflects the impact of different stages of mitigation strategies as well as the vaccination effectiveness, and provides forecasts of near future scenarios.

Keywords: COVID-19; Bayesian inference; change point; multi-wave trajectory; vaccination; NUTS (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/1/21/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/1/21/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2021:i:1:p:21-:d:707966

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2021:i:1:p:21-:d:707966