Data Classification Methodology for Electronic Noses Using Uniform Manifold Approximation and Projection and Extreme Learning Machine
Jersson X. Leon-Medina,
Núria Parés,
Maribel Anaya,
Diego A. Tibaduiza and
Francesc Pozo
Additional contact information
Jersson X. Leon-Medina: Control, Modeling, Identification and Applications (CoDAlab), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs (CDB), Universitat Politècnica de Catalunya (UPC), Eduard Maristany 16, 08019 Barcelona, Spain
Núria Parés: Laboratori de Càlcul Numèric (LaCàN), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs (CDB), Universitat Politècnica de Catalunya (UPC), Eduard Maristany 16, 08019 Barcelona, Spain
Maribel Anaya: MEM (Modelling-Electronics and Monitoring Research Group), Faculty of Electronics Engineering, Universidad Santo Tomás, Bogota 110231, Colombia
Diego A. Tibaduiza: Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Cra 45 No. 26-85, Bogota 111321, Colombia
Francesc Pozo: Control, Modeling, Identification and Applications (CoDAlab), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs (CDB), Universitat Politècnica de Catalunya (UPC), Eduard Maristany 16, 08019 Barcelona, Spain
Mathematics, 2021, vol. 10, issue 1, 1-38
Abstract:
The classification and use of robust methodologies in sensor array applications of electronic noses (ENs) remain an open problem. Among the several steps used in the developed methodologies, data preprocessing improves the classification accuracy of this type of sensor. Data preprocessing methods, such as data transformation and data reduction, enable the treatment of data with anomalies, such as outliers and features, that do not provide quality information; in addition, they reduce the dimensionality of the data, thereby facilitating the tasks of a machine learning classifier. To help solve this problem, in this study, a machine learning methodology is introduced to improve signal processing and develop methodologies for classification when an EN is used. The proposed methodology involves a normalization stage to scale the data from the sensors, using both the well-known min − max approach and the more recent mean-centered unitary group scaling (MCUGS). Next, a manifold learning algorithm for data reduction is applied using uniform manifold approximation and projection (UMAP). The dimensionality of the data at the input of the classification machine is reduced, and an extreme learning machine (ELM) is used as a machine learning classifier algorithm. To validate the EN classification methodology, three datasets of ENs were used. The first dataset was composed of 3600 measurements of 6 volatile organic compounds performed by employing 16 metal-oxide gas sensors. The second dataset was composed of 235 measurements of 3 different qualities of wine, namely, high, average, and low, as evaluated by using an EN sensor array composed of 6 different sensors. The third dataset was composed of 309 measurements of 3 different gases obtained by using an EN sensor array of 2 sensors. A 5-fold cross-validation approach was used to evaluate the proposed methodology. A test set consisting of 25% of the data was used to validate the methodology with unseen data. The results showed a fully correct average classification accuracy of 1 when the MCUGS, UMAP, and ELM methods were used. Finally, the effect of changing the number of target dimensions on the reduction of the number of data was determined based on the highest average classification accuracy.
Keywords: electronic nose (EN); data transformation; data reduction; manifold learning; mean-centered unitary group-scaling (MCUGS); uniform manifold approximation and projection (UMAP); extreme learning machine (ELM); odor recognition (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/1/29/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/1/29/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2021:i:1:p:29-:d:708614
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().