EconPapers    
Economics at your fingertips  
 

A Coupled Mathematical Model of the Dissemination Route of Short-Term Fund-Raising Fraud

Shan Yang, Kaijun Su, Bing Wang and Zitong Xu
Additional contact information
Shan Yang: School of Resources and Safety Engineering, Central South University, Changsha 410083, China
Kaijun Su: School of Resources and Safety Engineering, Central South University, Changsha 410083, China
Bing Wang: School of Resources and Safety Engineering, Central South University, Changsha 410083, China
Zitong Xu: School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Mathematics, 2022, vol. 10, issue 10, 1-23

Abstract: To effectively protect citizens’ property from the infringement of fund-raising fraud, it is necessary to investigate the dissemination, identification, and causation of fund-raising fraud. In this study, the Susceptible Infected Recovered (SIR) model, Back-Propagation (BP) neural network, Fault tree, and Bayesian network were used to analyze the dissemination, identification, and causation of fund-raising fraud. Firstly, relevant data about fund-raising fraud were collected from residents in the same area via a questionnaire survey. Secondly, the SIR model was used to simulate the dissemination of victims, susceptibles, alerts, and fraud amount; the BP neural network was used to identify the data of financial fraud and change the accuracy of the number analysis of neurons and hidden layers; the fault-tree model and the Bayesian network model were employed to analyze the causation and importance of basic events. Finally, the security measures of fund-raising fraud were simulated by changing the dissemination parameters. The results show that (1) for the spread of the scam, the scale of the victims expands sharply with the increase of the fraud cycle, and the victims of the final fraud cycle account for 12.5% of people in the region; (2) for the source of infection of the scam, the initial recognition rate of fraud by the BP neural network varies from 90.9% to 93.9%; (3) for the victims of the scam, reducing fraud publicity, improving risk awareness, and strengthening fraud supervision can effectively reduce the probability of fraud; and (4) reducing the fraud rate can reduce the number of victims and delay the outbreak time. Improving the alert rate can reduce victims on a large scale. Strengthening supervision can restrict the scale of victims and prolong the duration of fraud.

Keywords: the SIR model; BP neural network; fault tree; Bayesian network; financial fraud (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/10/1709/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/10/1709/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:10:p:1709-:d:817203

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1709-:d:817203