Application of HMM and Ensemble Learning in Intelligent Tunneling
Yongbo Pan and
Xunlin Zhu
Additional contact information
Yongbo Pan: School of Mathematics and Statistics, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450001, China
Xunlin Zhu: School of Mathematics and Statistics, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450001, China
Mathematics, 2022, vol. 10, issue 10, 1-17
Abstract:
The cutterhead torque and thrust, reflecting the obstruction degree of the geological environment and the behavior of excavation, are the key operating parameters for the tunneling of tunnel boring machines (TBMs). In this paper, a hybrid hidden Markov model (HMM) combined with ensemble learning is proposed to predict the value intervals of the cutterhead torque and thrust based on the historical tunneling data. First, the target variables are encoded into discrete states by means of HMM. Then, ensemble learning models including AdaBoost, random forest (RF), and extreme random tree (ERT) are employed to predict the discrete states. On this basis, the performances of those models are compared under different forms of the same input parameters. Moreover, to further validate the effectiveness and superiority of the proposed method, two excavation datasets including Beijing and Zhengzhou from the actual project under different geological conditions are utilized for comparison. The results show that the ERT outperforms the other models and the corresponding prediction accuracies are up to 0.93 and 0.99 for the cutterhead torque and thrust, respectively. Therefore, the ERT combined with HMM can be used as a valuable prediction tool for predicting the cutterhead torque and thrust, which is of positive significance to alert the operator to judge whether the excavation is normal and assist the intelligent tunneling.
Keywords: HMM; ensemble learning; tunnel excavation; operating parameter (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/10/1778/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/10/1778/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:10:p:1778-:d:821979
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().