EconPapers    
Economics at your fingertips  
 

Chaotic and Hyperchaotic Dynamics of a Clapp Oscillator

Jiri Petrzela
Additional contact information
Jiri Petrzela: Department of Radio Electronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic

Mathematics, 2022, vol. 10, issue 11, 1-20

Abstract: This paper describes recent findings achieved during a numerical investigation of the circuit known as the Clapp oscillator. By considering the generalized bipolar transistor as an active element and after applying the search-for-chaos optimization approach, parameter regions that lead to either chaotic or hyperchaotic dynamics were discovered. For starters, the two-port that represents the transistor was firstly assumed to have a polynomial-forward trans-conductance; then the shape of trans-conductance changes into the piecewise-linear characteristics. Both cases cause vector field symmetry and allow the coexistence of several different attractors. Chaotic and hyperchaotic behavior were deeply analyzed by using standard numerical tools such as Lyapunov exponents, basins of attraction, bifurcation diagrams, and solution sensitivity. The structural stability of strange attractors observed numerically was finally proved via a real practical experiment: a flow-equivalent chaotic oscillator was constructed as the lumped electronic circuit, and desired attractors were captured and provided as oscilloscope screenshots.

Keywords: Clapp oscillator; chaos; hyperchaos; Lyapunov exponents; strange attractors (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/11/1868/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/11/1868/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:11:p:1868-:d:827682

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1868-:d:827682