A Novel Spatio-Temporal Fully Meshless Method for Parabolic PDEs
Juan José Benito,
Ángel García,
Mihaela Negreanu,
Francisco Ureña and
Antonio M. Vargas
Additional contact information
Juan José Benito: Escuela Técnica de Ingenieros Industriales, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain
Ángel García: Escuela Técnica de Ingenieros Industriales, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain
Mihaela Negreanu: Departamento de Análisis Matemático y Matemática Aplicada, Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
Francisco Ureña: Escuela Técnica de Ingenieros Industriales, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain
Antonio M. Vargas: Departamento de Análisis Matemático y Matemática Aplicada, Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
Mathematics, 2022, vol. 10, issue 11, 1-12
Abstract:
We introduce a meshless method derived by considering the time variable as a spatial variable without the need to extend further conditions to the solution of linear and non-linear parabolic PDEs. The method is based on a moving least squares method, more precisely, the generalized finite difference method (GFDM), which allows us to select well-conditioned stars. Several 2D and 3D examples, including the time variable, are shown for both regular and irregular node distributions. The results are compared with explicit GFDM both in terms of errors and execution time.
Keywords: generalized finite differences; meshless method; parabolic partial differential equations (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/11/1870/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/11/1870/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:11:p:1870-:d:827732
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().