EconPapers    
Economics at your fingertips  
 

On the Suitability of Bagging-Based Ensembles with Borderline Label Noise

José A. Sáez and José L. Romero-Béjar
Additional contact information
José A. Sáez: Department of Statistics and Operations Research, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
José L. Romero-Béjar: Department of Statistics and Operations Research, University of Granada, Fuentenueva s/n, 18071 Granada, Spain

Mathematics, 2022, vol. 10, issue 11, 1-14

Abstract: Real-world classification data usually contain noise, which can affect the accuracy of the models and their complexity. In this context, an interesting approach to reduce the effects of noise is building ensembles of classifiers, which traditionally have been credited with the ability to tackle difficult problems. Among the alternatives to build ensembles with noisy data, bagging has shown some potential in the specialized literature. However, existing works in this field are limited and only focus on the study of noise based on a random mislabeling, which is unlikely to occur in real-world applications. Recent research shows that other types of noise, such as that occurring at class boundaries, are more common and challenging for classification algorithms. This paper delves into the analysis of the usage of bagging techniques in these complex problems, in which noise affects the decision boundaries among classes. In order to investigate whether bagging is able to reduce the impact of borderline noise, an experimental study is carried out considering a large number of datasets with different noise levels, and several noise models and classification algorithms. The results obtained reflect that bagging obtains a better accuracy and robustness than the individual models with this complex type of noise. The highest improvements in average accuracy are around 2–4% and are generally found at medium-high noise levels (from 15–20% onwards). The partial consideration of noisy samples when creating the subsamples from the original training set in bagging can make it so that only some parts of the decision boundaries among classes are impaired when building each model, reducing the impact of noise in the global system.

Keywords: borderline noise; label noise; bagging; ensembles; robust learners; classification (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/11/1892/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/11/1892/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:11:p:1892-:d:829694

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1892-:d:829694