EconPapers    
Economics at your fingertips  
 

On Polynomials Orthogonal with Respect to an Inner Product Involving Higher-Order Differences: The Meixner Case

Roberto S. Costas-Santos, Anier Soria-Lorente and Jean-Marie Vilaire
Additional contact information
Roberto S. Costas-Santos: Facultad de Ciencias Técnicas, Universidad de Granma, Km. 17.5 de la carretera de Bayano-Manzanillo, Bayamo 85100, Cuba
Anier Soria-Lorente: Facultad de Ciencias Técnicas, Universidad de Granma, Km. 17.5 de la carretera de Bayano-Manzanillo, Bayamo 85100, Cuba
Jean-Marie Vilaire: Institut des Sciences, des Technologies et des Études Avancées d’Haïti, #10, Rue Mercier-Laham, Delmas 60, Musseau, Port-au-Prince 15953, Haiti

Mathematics, 2022, vol. 10, issue 11, 1-16

Abstract: In this contribution we consider sequences of monic polynomials orthogonal with respect to the Sobolev-type inner product f , g = ⟨ u M , f g ⟩ + λ T j f ( α ) T j g ( α ) , where u M is the Meixner linear operator, λ ∈ R + , j ∈ N , α ≤ 0 , and T is the forward difference operator Δ or the backward difference operator ∇. Moreover, we derive an explicit representation for these polynomials. The ladder operators associated with these polynomials are obtained, and the linear difference equation of the second order is also given. In addition, for these polynomials, we derive a ( 2 j + 3 ) -term recurrence relation. Finally, we find the Mehler–Heine type formula for the particular case α = 0 .

Keywords: Meixner polynomials; Meixner–Sobolev orthogonal polynomials; discrete kernel polynomials (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/11/1952/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/11/1952/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:11:p:1952-:d:832703

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1952-:d:832703