Recent Iris and Ocular Recognition Methods in High- and Low-Resolution Images: A Survey
Young Won Lee and
Kang Ryoung Park
Additional contact information
Young Won Lee: Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea
Kang Ryoung Park: Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea
Mathematics, 2022, vol. 10, issue 12, 1-20
Abstract:
Among biometrics, iris and ocular recognition systems are the methods that recognize eye features in an image. Such iris and ocular regions must have a certain image resolution to achieve a high recognition performance; otherwise, the risk of performance degradation arises. This is even more critical in the case of iris recognition where detailed patterns are used. In cases where such low-resolution images are acquired and the acquisition apparatus and environment cannot be improved, recognition performance can be enhanced by obtaining high-resolution images with methods such as super-resolution reconstruction. However, previous survey papers have mainly summarized studies on high-resolution iris and ocular recognition, but do not provide detailed summaries of studies on low-resolution iris and ocular recognition. Therefore, we investigated high-resolution iris and ocular recognition methods and introduced in detail the low-resolution iris and ocular recognition methods and methods of solving the low-resolution problem. Furthermore, since existing survey papers have focused on and summarized studies on traditional handcrafted feature-based iris and ocular recognition, this survey paper also introduced the latest deep learning-based methods in detail.
Keywords: iris and ocular recognition; high- and low-resolution images; super-resolution reconstruction; handcrafted feature; deep learning (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/12/2063/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/12/2063/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:12:p:2063-:d:839053
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().