EconPapers    
Economics at your fingertips  
 

A Geologic-Actuarial Approach for Insuring the Extraction Tasks of Non-Renewable Resources by One and Two Agents

Rigoberto Real-Miranda and José Daniel López-Barrientos
Additional contact information
Rigoberto Real-Miranda: Facultad de Ciencias Actuariales, Universidad Anáhuac México, Av. Universidad Anáhuac 46, Naucalpan de Juárez 52786, Mexico
José Daniel López-Barrientos: Facultad de Ciencias Actuariales, Universidad Anáhuac México, Av. Universidad Anáhuac 46, Naucalpan de Juárez 52786, Mexico

Mathematics, 2022, vol. 10, issue 13, 1-19

Abstract: This work uses classic stochastic dynamic programming techniques to determine the equivalence premium that each of two extraction agents of a non-renewable natural resource must pay to an insurer to cover the risk that the extraction pore explodes. We use statistical and geological methods to calibrate the time-until-failure distribution of extraction status for each agent and couple a simple approximation scheme with the actuarial standard of Bühlmann’s recommendations to charge the extracting agents a variance premium, while the insurer earns a return on its investment at risk. We test our analytical results through Monte Carlo simulations to verify that the probability of ruin does not exceed a certain predetermined level.

Keywords: extraction game for two agents; time-until-failure; hazard rates; vertical pressure gradient; Bühlmann recommendations for premium calculation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/13/2242/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/13/2242/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:13:p:2242-:d:848439

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2242-:d:848439