Near-Record Values in Discrete Random Sequences
Miguel Lafuente,
Raúl Gouet,
F. Javier López and
Gerardo Sanz
Additional contact information
Miguel Lafuente: Departamento de Métodos Estadísticos, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
Raúl Gouet: Departamento Ingeniería Matemática y Centro de Modelamiento Matemático (CNRS IRL 2807), Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile
F. Javier López: Departamento de Métodos Estadísticos, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
Gerardo Sanz: Departamento de Métodos Estadísticos, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
Mathematics, 2022, vol. 10, issue 14, 1-20
Abstract:
Given a sequence ( X n ) of random variables, X n is said to be a near-record if X n ∈ ( M n − 1 − a , M n − 1 ] , where M n = max { X 1 , … , X n } and a > 0 is a parameter. We investigate the point process η on [ 0 , ∞ ) of near-record values from an integer-valued, independent and identically distributed sequence, showing that it is a Bernoulli cluster process. We derive the probability generating functional of η and formulas for the expectation, variance and covariance of the counting variables η ( A ) , A ⊂ [ 0 , ∞ ) . We also derive the strong convergence and asymptotic normality of η ( [ 0 , n ] ) , as n → ∞ , under mild regularity conditions on the distribution of the observations. For heavy-tailed distributions, with square-summable hazard rates, we prove that η ( [ 0 , n ] ) grows to a finite random limit and compute its probability generating function. We present examples of the application of our results to particular distributions, covering a wide range of behaviours in terms of their right tails.
Keywords: record; near-record; Bernoulli cluster process; law of large numbers; central limit theorem (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/14/2442/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/14/2442/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:14:p:2442-:d:861913
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().