EconPapers    
Economics at your fingertips  
 

Near-Record Values in Discrete Random Sequences

Miguel Lafuente, Raúl Gouet, F. Javier López and Gerardo Sanz
Additional contact information
Miguel Lafuente: Departamento de Métodos Estadísticos, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
Raúl Gouet: Departamento Ingeniería Matemática y Centro de Modelamiento Matemático (CNRS IRL 2807), Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile
F. Javier López: Departamento de Métodos Estadísticos, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
Gerardo Sanz: Departamento de Métodos Estadísticos, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain

Mathematics, 2022, vol. 10, issue 14, 1-20

Abstract: Given a sequence ( X n ) of random variables, X n is said to be a near-record if X n ∈ ( M n − 1 − a , M n − 1 ] , where M n = max { X 1 , … , X n } and a > 0 is a parameter. We investigate the point process η on [ 0 , ∞ ) of near-record values from an integer-valued, independent and identically distributed sequence, showing that it is a Bernoulli cluster process. We derive the probability generating functional of η and formulas for the expectation, variance and covariance of the counting variables η ( A ) , A ⊂ [ 0 , ∞ ) . We also derive the strong convergence and asymptotic normality of η ( [ 0 , n ] ) , as n → ∞ , under mild regularity conditions on the distribution of the observations. For heavy-tailed distributions, with square-summable hazard rates, we prove that η ( [ 0 , n ] ) grows to a finite random limit and compute its probability generating function. We present examples of the application of our results to particular distributions, covering a wide range of behaviours in terms of their right tails.

Keywords: record; near-record; Bernoulli cluster process; law of large numbers; central limit theorem (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/14/2442/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/14/2442/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:14:p:2442-:d:861913

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2442-:d:861913