EconPapers    
Economics at your fingertips  
 

Multi-Gear Bandits, Partial Conservation Laws, and Indexability

José Niño-Mora
Additional contact information
José Niño-Mora: Department of Statistics, Carlos III University of Madrid, 28903 Getafe, Spain

Mathematics, 2022, vol. 10, issue 14, 1-31

Abstract: This paper considers what we propose to call multi-gear bandits , which are Markov decision processes modeling a generic dynamic and stochastic project fueled by a single resource and which admit multiple actions representing gears of operation naturally ordered by their increasing resource consumption. The optimal operation of a multi-gear bandit aims to strike a balance between project performance costs or rewards and resource usage costs, which depend on the resource price. A computationally convenient and intuitive optimal solution is available when such a model is indexable , meaning that its optimal policies are characterized by a dynamic allocation index (DAI), a function of state–action pairs representing critical resource prices. Motivated by the lack of general indexability conditions and efficient index-computing schemes, and focusing on the infinite-horizon finite-state and -action discounted case, we present a verification theorem ensuring that, if a model satisfies two proposed PCL-indexability conditions with respect to a postulated family of structured policies, then it is indexable and such policies are optimal, with its DAI being given by a marginal productivity index computed by a downshift adaptive-greedy algorithm in A N steps, with A + 1 actions and N states. The DAI is further used as the basis of a new index policy for the multi-armed multi-gear bandit problem .

Keywords: Markov decision process; multi-gear bandits; index policies; indexability; index algorithm (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/14/2497/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/14/2497/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:14:p:2497-:d:865645

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2497-:d:865645