EconPapers    
Economics at your fingertips  
 

Support Vector Machine with Robust Low-Rank Learning for Multi-Label Classification Problems in the Steelmaking Process

Qiang Li, Chang Liu and Qingxin Guo
Additional contact information
Qiang Li: Liaoning Engineering Laboratory of Data Analytics and Optimization for Smart Industry, Shenyang 110819, China
Chang Liu: Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110819, China
Qingxin Guo: National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China

Mathematics, 2022, vol. 10, issue 15, 1-15

Abstract: In this paper, we present a novel support vector machine learning method for multi-label classification in the steelmaking process. The steelmaking process involves complicated physicochemical reactions. The end-point temperature is the key to the steelmaking process. According to the initial furnace condition information, the end-point temperature can be predicted using a data-driven method. Based on the setting value of the temperature before tapping, multi-scale predicted errors of the end-point temperature can be calculated and divided into different ranges. The quality evaluation problem can be attributed to the multi-label classification problem of molten steel quality. To solve the classification problem, considering that it is difficult to capture nonlinear relationships between the input and output in linear models, we propose a novel support vector machine with robust low-rank learning, which has the characteristics of class imbalance without label correlations; a low-rank constraint is used to deal with high-order label correlations in low-dimensional space. Furthermore, we derive an accelerated proximal gradient algorithm and then extend it to handle the nonlinear multi-label classifiers. To validate the proposed model, experiments are conducted with real data from a practical steelmaking problem. The results show that the proposed model can effectively solve the multi-label classification problem in industrial production. To evaluate the proposed approach as a general classification approach, we test it on multi-label classification benchmark datasets. The results illustrate that the proposed approach performs better than other state-of-the-art approaches across different scenarios.

Keywords: steelmaking process; multi-label classification; support vector machine; robust low-rank learning; practical problem (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/15/2659/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/15/2659/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:15:p:2659-:d:874516

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2659-:d:874516