EconPapers    
Economics at your fingertips  
 

Properties of Statistical Depth with Respect to Compact Convex Random Sets: The Tukey Depth

Luis González- De La Fuente, Alicia Nieto-Reyes and Pedro Terán
Additional contact information
Luis González- De La Fuente: Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, 39005 Santander, Spain
Alicia Nieto-Reyes: Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, 39005 Santander, Spain
Pedro Terán: Departamento de Estadística e Investigación Operativa y Didáctica de las Matemáticas, Universidad de Oviedo, 33007 Oviedo, Spain

Mathematics, 2022, vol. 10, issue 15, 1-23

Abstract: We study a statistical data depth with respect to compact convex random sets, which is consistent with the multivariate Tukey depth and the Tukey depth for fuzzy sets. In addition, it provides a different perspective to the existing halfspace depth with respect to compact convex random sets. In studying this depth function, we provide a series of properties for the statistical data depth with respect to compact convex random sets. These properties are an adaptation of properties that constitute the axiomatic notions of multivariate, functional, and fuzzy depth-functions and other well-known properties of depth.

Keywords: compact convex set; halfspace depth; statistical depth function; symmetry (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/15/2758/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/15/2758/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:15:p:2758-:d:879481

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2758-:d:879481