EconPapers    
Economics at your fingertips  
 

SMoCo: A Powerful and Efficient Method Based on Self-Supervised Learning for Fault Diagnosis of Aero-Engine Bearing under Limited Data

Zitong Yan and Hongmei Liu ()
Additional contact information
Zitong Yan: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
Hongmei Liu: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

Mathematics, 2022, vol. 10, issue 15, 1-24

Abstract: Vibration signals collected in real industrial environments are usually limited and unlabeled. In this case, fault diagnosis methods based on deep learning tend to perform poorly. Previous work mainly used the unlabeled data of the same diagnostic object to improve the diagnostic accuracy, but it did not make full use of the easily available unlabeled signals from different sources. In this study, a signal momentum contrast for unsupervised representation learning (SMoCo) based on the contrastive learning algorithm—momentum contrast for unsupervised visual representation Learning (MoCo)—is proposed. It can learn how to automatically extract fault features from unlabeled data collected from different diagnostic objects and then transfer this ability to target diagnostic tasks. On the structure, SMoCo increases the stability by adding batch normalization to the multilayer perceptron (MLP) layer of MoCo and increases the flexibility by adding a predictor to the query network. Using the data augmentation method, SMoCo performs feature extraction on vibration signals from both time and frequency domains, which is called signal multimodal learning (SML). It has been proved by experiments that after pre-training with artificially injected fault bearing data, SMoCo can learn a powerful and robust feature extractor, which can greatly improve the accuracy no matter the target diagnostic data with different working conditions, different failure modes, or even different types of equipment from the pre-training dataset. When faced with the target diagnosis task, SMoCo can achieve accuracy far better than other representative methods in only a very short time, and its excellent robustness regarding the amount of data in both the unlabeled pre-training dataset and the target diagnosis dataset as well as the strong noise demonstrates its great potential and superiority in fault diagnosis.

Keywords: self-supervised learning; data augmentation; limited data; fault diagnosis; aero-engine; rolling bearing (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/15/2796/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/15/2796/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:15:p:2796-:d:882154

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2796-:d:882154