EconPapers    
Economics at your fingertips  
 

A Matrix Spline Method for a Class of Fourth-Order Ordinary Differential Problems

Michael M. Tung (), Emilio Defez, Javier Ibáñez, José M. Alonso and Julia Real-Herráiz
Additional contact information
Michael M. Tung: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Emilio Defez: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Javier Ibáñez: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
José M. Alonso: Instituto de Instrumentación Para Imagen Molecular, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Julia Real-Herráiz: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Mathematics, 2022, vol. 10, issue 16, 1-18

Abstract: Differential matrix models provide an elementary blueprint for the adequate and efficient treatment of many important applications in science and engineering. In the present work, we suggest a procedure, extending our previous research results, to represent the solutions of nonlinear matrix differential problems of fourth order given in the form Y ( 4 ) ( x ) = f ( x , Y ( x ) ) in terms of higher-order matrix splines. The corresponding algorithm is explained, and some numerical examples for the illustration of the method are included.

Keywords: matrix differential equations; higher-order matrix splines; numerical algorithms (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/16/2826/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/16/2826/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:16:p:2826-:d:883530

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2826-:d:883530