EconPapers    
Economics at your fingertips  
 

On Principal Fuzzy Metric Spaces

Valentín Gregori (), Juan-José Miñana, Samuel Morillas and Almanzor Sapena
Additional contact information
Valentín Gregori: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/Paranimf, 1, 46730 Grao de Gandia, Spain
Juan-José Miñana: Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Carretera de Valldemossa km. 7.5, 07122 Palma, Spain
Samuel Morillas: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camí de Vera, s/n, 46002 Valencia, Spain
Almanzor Sapena: Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/Paranimf, 1, 46730 Grao de Gandia, Spain

Mathematics, 2022, vol. 10, issue 16, 1-10

Abstract: In this paper, we deal with the notion of fuzzy metric space ( X , M , ∗ ) , or simply X , due to George and Veeramani. It is well known that such fuzzy metric spaces, in general, are not completable and also that there exist p -Cauchy sequences which are not Cauchy. We prove that if every p -Cauchy sequence in X is Cauchy, then X is principal, and we observe that the converse is false, in general. Hence, we introduce and study a stronger concept than principal, called strongly principal. Moreover, X is called weak p -complete if every p -Cauchy sequence is p -convergent. We prove that if X is strongly principal (or weak p -complete principal), then the family of p -Cauchy sequences agrees with the family of Cauchy sequences. Among other results related to completeness, we prove that every strongly principal fuzzy metric space where M is strong with respect to an integral (positive) t -norm ∗ admits completion.

Keywords: fuzzy metric; Cauchy sequence; principal fuzzy metric; p -Cauchy sequence; completeness; completion (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/16/2860/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/16/2860/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:16:p:2860-:d:885427

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2860-:d:885427