EconPapers    
Economics at your fingertips  
 

Generalized Randić Estrada Indices of Graphs

Eber Lenes (), Exequiel Mallea-Zepeda, Luis Medina and Jonnathan Rodríguez
Additional contact information
Eber Lenes: Área de Ciencias Básicas Exactas, Grupo de Investigación Deartica, Universidad del Sinú, Cartagena 130001, Colombia
Exequiel Mallea-Zepeda: Departamento de Matemática, Universidad de Tarapacá, Arica 1000000, Chile
Luis Medina: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1240000, Chile
Jonnathan Rodríguez: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1240000, Chile

Mathematics, 2022, vol. 10, issue 16, 1-14

Abstract: Let G be a simple undirected graph on n vertices. V. Nikiforov studied hybrids of A G and D G and defined the matrix A α G for every real α ∈ [ 0 , 1 ] as A α G = α D G + ( 1 − α ) A G . In this paper, we define the generalized Randić matrix for graph G , and we introduce and establish bounds for the Estrada index of this new matrix. Furthermore, we find the smallest value of α for which the generalized Randić matrix is positive semidefinite. Finally, we present the solution to the problem proposed by V. Nikiforov. The problem consists of the following: for a given simple undirected graph G , determine the smallest value of α for which A α G is positive semidefinite.

Keywords: convex combination of matrices; generalized Randi? matrix; Estrada index; positive semidefinite matrix; bipartite graph (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/16/2932/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/16/2932/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:16:p:2932-:d:888105

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2932-:d:888105