EconPapers    
Economics at your fingertips  
 

Solution of the Thermoelastic Problem for a Two-Dimensional Curved Beam with Bimodular Effects

Xiao-Ting He (), Meng-Qiao Zhang, Bo Pang and Jun-Yi Sun
Additional contact information
Xiao-Ting He: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Meng-Qiao Zhang: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Bo Pang: School of Civil Engineering, Chongqing University, Chongqing 400045, China
Jun-Yi Sun: School of Civil Engineering, Chongqing University, Chongqing 400045, China

Mathematics, 2022, vol. 10, issue 16, 1-22

Abstract: In classical thermoelasticity, the bimodular effect of materials is rarely considered. However, all materials will present, in essence, different properties in tension and compression, more or less. The bimodular effect is generally ignored only for simple analysis. In this study, we theoretically analyze a two-dimensional curved beam with a bimodular effect and under mechanical and thermal loads. We first establish a simplified model on a subarea in tension and compression. On the basis of this model, we adopt the Duhamel similarity theorem to change the initial thermoelastic problem as an elasticity problem without the thermal effect. The superposition of the special solution and supplement solution of the Lamé displacement equation enables us to satisfy the boundary conditions and stress continuity conditions of the bimodular curved beam, thus obtaining a two-dimensional thermoelastic solution. The results indicate that the solution obtained can reduce to bimodular curved beam problems without thermal loads and to the classical Golovin solution. In addition, the bimodular effect on thermal stresses is discussed under linear and non-linear temperature rise modes. Specially, when the compressive modulus is far greater than the tensile modulus, a large compressive stress will occur at the inner edge of the curved beam, which should be paid with more attention in the design of the curved beams in a thermal environment.

Keywords: thermoelasticity; bimodular effect; curved beams; tension and compression; thermal stress (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/16/3002/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/16/3002/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:16:p:3002-:d:892858

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:3002-:d:892858