EconPapers    
Economics at your fingertips  
 

On Hermite Functions, Integral Kernels, and Quantum Wires

Silvestro Fassari, Manuel Gadella, Luis M. Nieto () and Fabio Rinaldi
Additional contact information
Silvestro Fassari: Centro Europeo Ricerche in Fisica Matematica (CERFIM), P.O. Box 1132, CH-6601 Locarno, Switzerland
Manuel Gadella: Departamento de Física Teórica, Atómica y Óptica, and IMUVA, Universidad de Valladolid, 47011 Valladolid, Spain
Luis M. Nieto: Departamento de Física Teórica, Atómica y Óptica, and IMUVA, Universidad de Valladolid, 47011 Valladolid, Spain
Fabio Rinaldi: Centro Europeo Ricerche in Fisica Matematica (CERFIM), P.O. Box 1132, CH-6601 Locarno, Switzerland

Mathematics, 2022, vol. 10, issue 16, 1-11

Abstract: In this note, we first evaluate and subsequently achieve a rather accurate approximation of a scalar product, the calculation of which is essential in order to determine the ground state energy in a two-dimensional quantum model. This scalar product involves an integral operator defined in terms of the eigenfunctions of the harmonic oscillator, expressed in terms of the well-known Hermite polynomials, so that some rather sophisticated mathematical tools are required.

Keywords: Gaussian potential; Birman–Schwinger operator; Hilbert–Schmidt operator; contact interaction (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/16/3012/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/16/3012/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:16:p:3012-:d:893842

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:3012-:d:893842