Extending Fuzzy Linguistic Logic Programming with Negation †
Le Van Hung ()
Additional contact information
Le Van Hung: Faculty of Information Technology, Hanoi University of Mining and Geology, Duc Thang, Bac Tu Liem, Hanoi 100803, Vietnam
Mathematics, 2022, vol. 10, issue 17, 1-22
Abstract:
Fuzzy linguistic logic programming (FLLP) is a framework for representation and reasoning with linguistically expressed human knowledge. In this paper, we extend FLLP by allowing negative literals to appear in rule bodies, resulting in normal logic programs. We study the stable model semantics and well-founded semantics of such programs and their relation. The two kinds of semantics are adapted from those of classical ones based on the Gelfond–Lifschitz transformation and van Gelder’s alternating fixpoint approach, respectively. To our knowledge, until now, there has been no work on the well-founded semantics of normal programs in any fuzzy logic programming (FLP) framework based on Vojtáš’s FLP. Moreover, the relation between the two kinds of semantics is usually studied using a bilattice setting of the truth domain. However, our truth domains do not possess a complete knowledge-ordering lattice and, thus, do not have a bilattice structure. The two kinds of semantics possess properties similar to those of the classical case. Every stable model contains the well-founded (partial) model, and the well-founded total model coincides with the unique stable model, but not vice versa. Since the well-founded semantics is closely related to the stable model semantics, it can help compute stable models more efficiently.
Keywords: fuzzy logic programming; stable model semantics; well-founded semantics; linguistic truth value; hedge algebra; linguistic hedge (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/10/17/3105/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/17/3105/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:17:p:3105-:d:901006
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().