EconPapers    
Economics at your fingertips  
 

Riemannian Calculus of Variations Using Strongly Typed Tensor Calculus

Victor Dods ()
Additional contact information
Victor Dods: Independent Researcher, Seattle, WA 98106, USA

Mathematics, 2022, vol. 10, issue 18, 1-56

Abstract: In this paper, the notion of strongly typed language will be borrowed from the field of computer programming to introduce a calculational framework for linear algebra and tensor calculus for the purpose of detecting errors resulting from inherent misuse of objects and for finding natural formulations of various objects. A tensor bundle formalism, crucially relying on the notion of pullback bundle, will be used to create a rich type system with which to distinguish objects. The type system and relevant notation is designed to “telescope” to accommodate a level of detail appropriate to a set of calculations. Various techniques using this formalism will be developed and demonstrated with the goal of providing a relatively complete and uniform method of coordinate-free computation. The calculus of variations pertaining to maps between Riemannian manifolds will be formulated using the strongly typed tensor formalism and associated techniques. Energy functionals defined in terms of first-order Lagrangians are the focus of the second half of this paper, in which the first variation, the Euler–Lagrange equations, and the second variation of such functionals will be derived.

Keywords: Riemannian manifolds; tensor and tensor field type system; calculus of variations; Euler–Lagrange equations (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/18/3231/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/18/3231/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:18:p:3231-:d:907948

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3231-:d:907948