EconPapers    
Economics at your fingertips  
 

Feed-Forward Neural Networks Training with Hybrid Taguchi Vortex Search Algorithm for Transmission Line Fault Classification

Melih Coban () and Suleyman Sungur Tezcan
Additional contact information
Melih Coban: Department of Electrical Electronic Engineering, Bolu Abant Izzet Baysal University, Golkoy, Bolu 14030, Turkey
Suleyman Sungur Tezcan: Department of Electrical-Electronic Engineering, Gazi University, Maltepe, Ankara 06570, Turkey

Mathematics, 2022, vol. 10, issue 18, 1-19

Abstract: In this study, the hybrid Taguchi vortex search (HTVS) algorithm, which exhibits a rapid convergence rate and avoids local optima, is employed as a new training algorithm for feed-forward neural networks (FNNs) and its performance was analyzed by comparing it with the vortex search (VS) algorithm, the particle swarm optimization (PSO) algorithm, the gravitational search algorithm (GSA) and the hybrid PSOGSA algorithm. The HTVS-based FNN (FNNHTVS) algorithm was applied to three datasets (iris classification, wine recognition and seed classification) taken from the UCI database (the machine learning repository of the University of California at Irvine) and to the 3-bit parity problem. The obtained statistical results were recorded for comparison. Then, the proposed algorithm was used for fault classification on transmission lines. A dataset was created using 735 kV, 60 Hz, 100 km transmission lines for different fault types, fault locations, fault resistance values and fault inception angles. The FNNHTVS algorithm was applied to this dataset and its performance was tested in comparison with that of other classifiers. The results indicated that the performance of the FNNHTVS algorithm was at least as successful as that of the other comparison algorithms. It has been shown that the FNN model trained with HTVS can be used as a capable alternative algorithm for the solution of classification problems.

Keywords: fault classification; HTVS algorithm; optimization; training feed-forward neural networks (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/18/3263/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/18/3263/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:18:p:3263-:d:909963

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3263-:d:909963