EconPapers    
Economics at your fingertips  
 

Processing Large Outliers in Arrays of Observations

Gurami Tsitsiashvili ()
Additional contact information
Gurami Tsitsiashvili: Institute for Applied Mathematics, Far Eastern Branch of Russian Academy of Sciences, 690041 Vladivostok, Russia

Mathematics, 2022, vol. 10, issue 18, 1-12

Abstract: The interest in large or extreme outliers in arrays of empirical information is caused by the wishes of users (with whom the author worked): specialists in medical and zoo geography, mining, the application of meteorology in fishing tasks, etc. The following motives are important for these specialists: the substantial significance of large emissions, the fear of errors in the study of large emissions by standard and previously used methods, the speed of information processing and the ease of interpretation of the results obtained. To meet these requirements, interval pattern recognition algorithms and the accompanying auxiliary computational procedures have been developed. These algorithms were designed for specific samples provided by the users (short samples, the presence of rare events in them or difficulties in the construction of interpretation scenarios). They have the common property that the original optimization procedures are built for them or well-known optimization procedures are used. This paper presents a series of results on processing observations by allocating large outliers as in a time series in planar and spatial observations. The algorithms presented in this paper differ in speed and sufficient validity in terms of the specially selected indicators. The proposed algorithms were previously tested on specific measurements and were accompanied by meaningful interpretations. According to the author, this paper is more applied than theoretical. However, to work with the proposed material, it is required to use a more diverse mathematical tool kit than the one that is traditionally used in the listed applications.

Keywords: large outliers; arrays of observations; complex systems; digraphs (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/18/3399/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/18/3399/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:18:p:3399-:d:918796

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3399-:d:918796