EconPapers    
Economics at your fingertips  
 

Improvement of an Adaptive Robot Control by Particle Swarm Optimization-Based Model Identification

Hazem Issa () and József K. Tar ()
Additional contact information
Hazem Issa: Doctoral School of Applied Informatics and Applied Mathematics, Óbuda University, Bécsi út. 96/B, H-1034 Budapest, Hungary
József K. Tar: Doctoral School of Applied Informatics and Applied Mathematics, Óbuda University, Bécsi út. 96/B, H-1034 Budapest, Hungary

Mathematics, 2022, vol. 10, issue 19, 1-21

Abstract: Model-based controllers suffer from the effects of modeling imprecisions. The analytical form of the available model often contains only approximate parameters and can be physically incomplete. The consequences of these effects can be compensated by adaptive techniques and by the improvement of the available model. Lyapunov function-based classic methods, which assume exact analytical model forms, guarantee asymptotic stability by cautious and slow parameter tuning. Fixed point iteration-based adaptive controllers can work without the exact model form but immediately yield precise trajectory tracking. They neither identify nor improve the parameters of the available model. However, any amendment of the model can improve the controller’s operation by affecting its range and speed of convergence. It is shown that even very primitive, fast, and simple versions of evolutionary computation-based methods can produce considerable improvement in their operation. Particle swarm optimization (PSO) is an attractive, efficient, and simple tool for model improvement. In this paper, a PSO-based model approximation technique was investigated for use in the control of a three degrees of freedom PUMA-type robot arm via numerical simulations. A fixed point iteration (FPI)-based adaptive controller was used for tracking a nominal trajectory while the PSO attempted to refine the model. It was found that the refined model still had few errors, the effects of which could not be completely neglected in the model-based control. The best practical solution seems to be the application of the same adaptive control with the use of the more precise, PSO-improved model. Apart from a preliminary study, the first attempt to combine PSO with FPI is presented here.

Keywords: adaptive control; fixed point iteration; particle swarm optimization (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/19/3609/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/19/3609/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:19:p:3609-:d:932068

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3609-:d:932068