EconPapers    
Economics at your fingertips  
 

Structured Compression of Convolutional Neural Networks for Specialized Tasks

Freddy Gabbay (), Benjamin Salomon and Gil Shomron
Additional contact information
Freddy Gabbay: Engineering Faculty, Ruppin Academic Center, Emek Hefer 4025000, Israel
Benjamin Salomon: Engineering Faculty, Ruppin Academic Center, Emek Hefer 4025000, Israel
Gil Shomron: NVIDIA

Mathematics, 2022, vol. 10, issue 19, 1-19

Abstract: Convolutional neural networks (CNNs) offer significant advantages when used in various image classification tasks and computer vision applications. CNNs are increasingly deployed in environments from edge and Internet of Things (IoT) devices to high-end computational infrastructures, such as supercomputers, cloud computing, and data centers. The growing amount of data and the growth in their model size and computational complexity, however, introduce major computational challenges. Such challenges present entry barriers for IoT and edge devices as well as increase the operational expenses of large-scale computing systems. Thus, it has become essential to optimize CNN algorithms. In this paper, we introduce the S-VELCRO compression algorithm, which exploits value locality to trim filters in CNN models utilized for specialized tasks. S-VELCRO uses structured compression, which can save costs and reduce overhead compared with unstructured compression. The algorithm runs in two steps: a preprocessing step identifies the filters with a high degree of value locality, and a compression step trims the selected filters. As a result, S-VELCRO reduces the computational load of the channel activation function and avoids the convolution computation of the corresponding trimmed filters. Compared with typical CNN compression algorithms that run heavy back-propagation training computations, S-VELCRO has significantly fewer computational requirements. Our experimental analysis shows that S-VELCRO achieves a compression-saving ratio between 6% and 30%, with no degradation in accuracy for ResNet-18, MobileNet-V2, and GoogLeNet when used for specialized tasks.

Keywords: machine learning; deep neural networks; convolutional neural network; structured compression (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/19/3679/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/19/3679/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:19:p:3679-:d:936082

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3679-:d:936082