EconPapers    
Economics at your fingertips  
 

Ocular Biometrics with Low-Resolution Images Based on Ocular Super-Resolution CycleGAN

Young Won Lee, Jung Soo Kim and Kang Ryoung Park ()
Additional contact information
Young Won Lee: Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea
Jung Soo Kim: Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea
Kang Ryoung Park: Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea

Mathematics, 2022, vol. 10, issue 20, 1-30

Abstract: Iris recognition, which is known to have outstanding performance among conventional biometrics techniques, requires a high-resolution camera and a sufficient amount of lighting to capture images containing various iris patterns. To address these issues, research is actively conducted on ocular recognition to include a periocular region in addition to the iris region, which also requires a high-resolution camera to capture images, indicating limited applications due to costs and size limitation. Accordingly, this study proposes an ocular super-resolution cycle-consistent generative adversarial network (OSRCycleGAN) for ocular super-resolution reconstruction, and additionally proposes a method to improve recognition performance in case that ocular images are acquired at a low-resolution. The results of the experiment conducted using open databases, namely, CASIA-iris-Distance and Lamp v4, and IIT Delhi iris database, showed that the equal error rate of recognition of the proposed method was 3.02%, 4.06% and 2.13% for each database, respectively, which outperformed state-of-the-art methods.

Keywords: biometrics; ocular recognition; super-resolution reconstruction; OSRCycleGAN (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/10/20/3818/pdf (application/pdf)
https://www.mdpi.com/2227-7390/10/20/3818/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:10:y:2022:i:20:p:3818-:d:943741

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3818-:d:943741